

Fiddling the Twiddle Constants: Fault Injection Analysis of the Number Theoretic Transform

Prasanna Ravi¹, Bolin Yang³, Shivam Bhasin¹, Anupam Chattopadhyay¹², Fan Zhang³

¹Temasek Labs, NTU, Singapore

³College of Information Science and Electronic Engineering, Zhejiang University, China

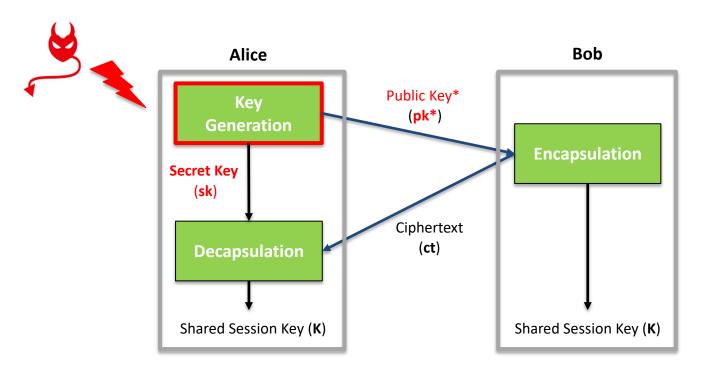
TCHES 2023, 11th September 2023

²School of Computer Science and Engineering, NTU Singapore

Motivation ☐ FIA on Kyber ☐ FIA on Key Generation ☐ FIA on Dilithium ☐ FIA on Signing ☐ FIA on Verification **□** Conclusion

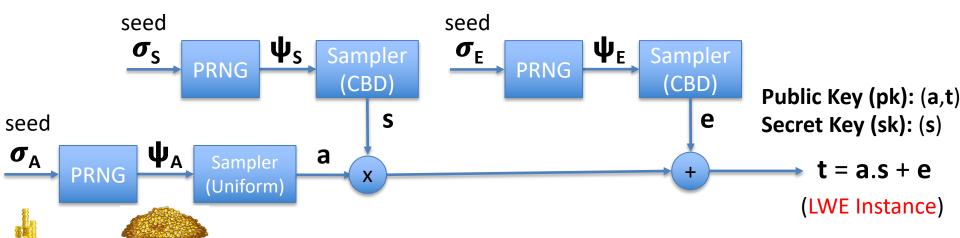
- Motivation
- ☐ FIA on Kyber
 - ☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

Motivation

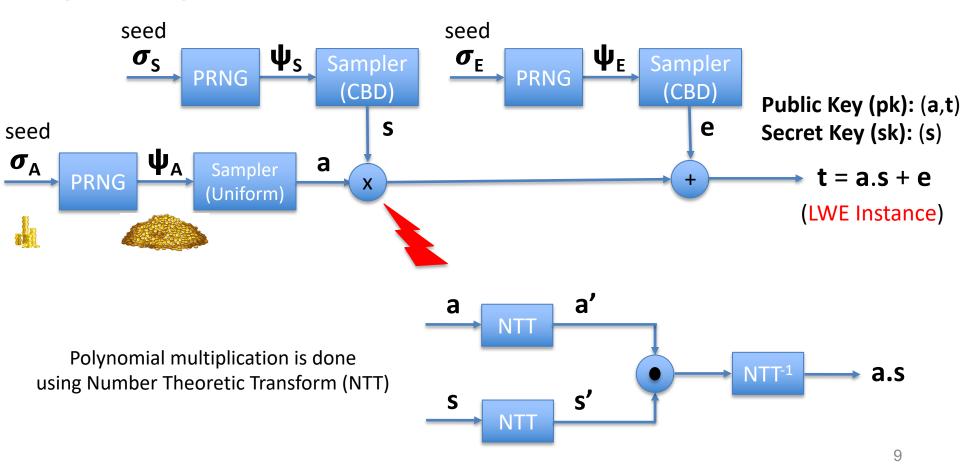

Kyber and Dilithium are Lattice-based schemes selected by NIST for PQC Standardization
They share several common features: Hardness based on Module Learning With Error (MLWE) Problem
Operate over Similar Polynomial Rings , leading to similar polynomial arithmetic operations
 □ Share common Building Blocks: □ Centered Binomial Sampler (CBD) □ Number Theoretic Transform (NTT)
Any implementation weakness in these building blocks will simultaneously affect both the scheme
NTT operates over sensitive variables (secret key): attractive target for SCA and FIAWhile NTT has been subjected to several types of SCA, so far no FIA has been performed

Our Work

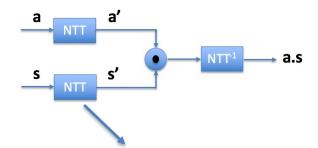
We pro	oposed the first practical FIA on the NTT:
	New Fault Target: Single Point of Failure in open-source NTT implementations for the ARM Cortex-M4 Microcontroller
□ A	Allows us to zeroize all twiddle constants of NTT using a single fault Reduces the entropy of sensitive variables in Kyber and Dilithium
□ к	Kyber: Key Recovery Attacks (Key Generation)
	 Message Recovery Attacks (Encapsulation) Dilithium: Signature Forgery Attacks (Signing)
	☐ Verification Bypass Attacks (Verification)
☐ E	Experimentally validated using Electromagnetic Fault Injection (EMFI) with 100% success rate
	Our attacks are able to bypass several fault injection countermeasures proposed for Kyber and Dilithium.

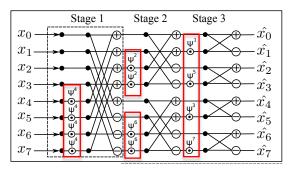

- Motivation
- ☐ FIA on Kyber☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

FIA on Kyber KeyGen



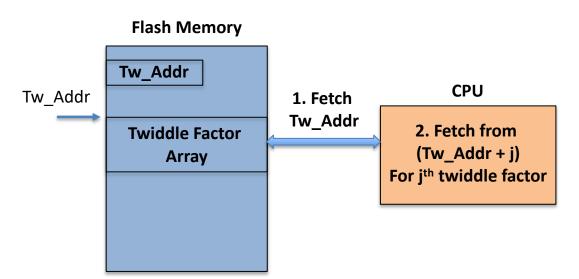
- ☐ Single execution to target Key Generation: Key Recovery Attack
 - ☐ Recover Secret key from Faulty but valid Public Key


Kyber KeyGen



Kyber KeyGen

NTT Fault Vulnerability



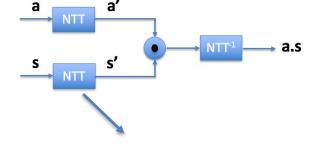
In MCU, Twiddle Constants are stored in Flash Memory as part of Firmware Binary

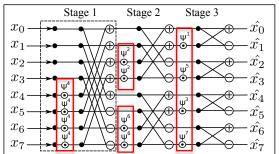
Manipulation of Twiddle Constants

Bare metal Software Implementation

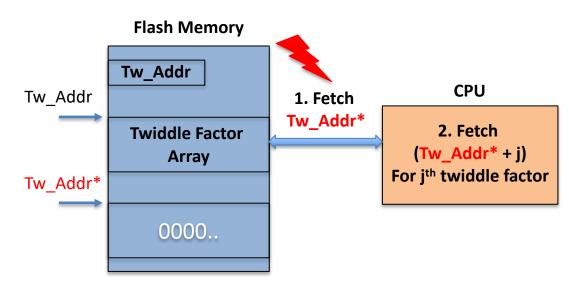
Implementation Style used in all open-source optimized implementations of Kyber and Dilithium for ARM Cortex-M4 Processor [BKS19, ABCG20, AHKS22, GKOS18, GKS21]

Main Observation: Tw_Addr is used as base-address to calculate address for all constants

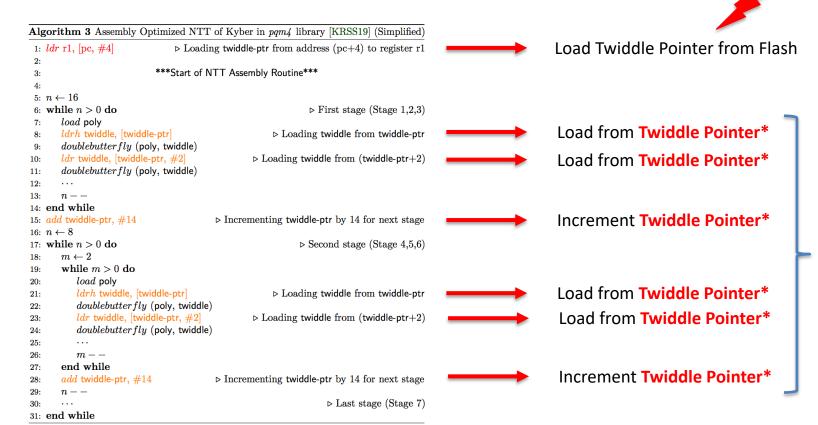

Fault Vulnerability: Can an attacker fault the base address?


NTT Fault Vulnerability

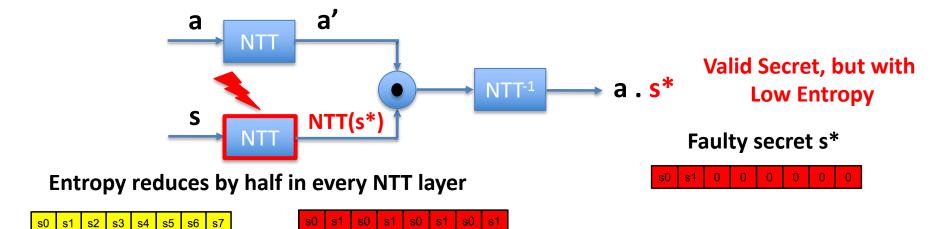
Manipulation of Twiddle Constants

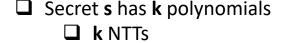

Bare metal Software Implementation

Implementation Style used in all open-source optimized implementations of Kyber and Dilithium for ARM Cortex-M4 Processor [BKS19, ABCG20, AHKS22, GKOS18, GKS21]


In MCU, Twiddle Constants are stored in Flash Memory as part of Firmware Binary

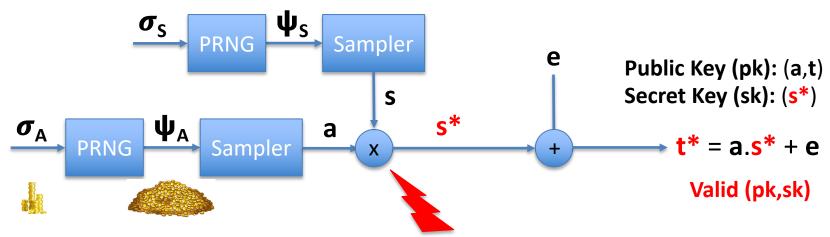
Fault Model: Bit Set, Reset Faults on data transferred from flash memory [MBD+19] **Observation:** Can zeroize the entire twiddle factor array in a single fault 25% of random memory locations yield **zeros** on ARM Cortex-M4 processor

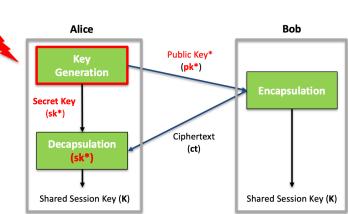

[MBD⁺19] Menu, Alexandre, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, and Jean-Luc Danger. "Precise spatio-temporal electromagnetic fault injections on data transfers." In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1-8. IEEE, 2019.


NTT Fault Vulnerability: Zeroization of Twiddle Constants

Corrupts all twiddle constants

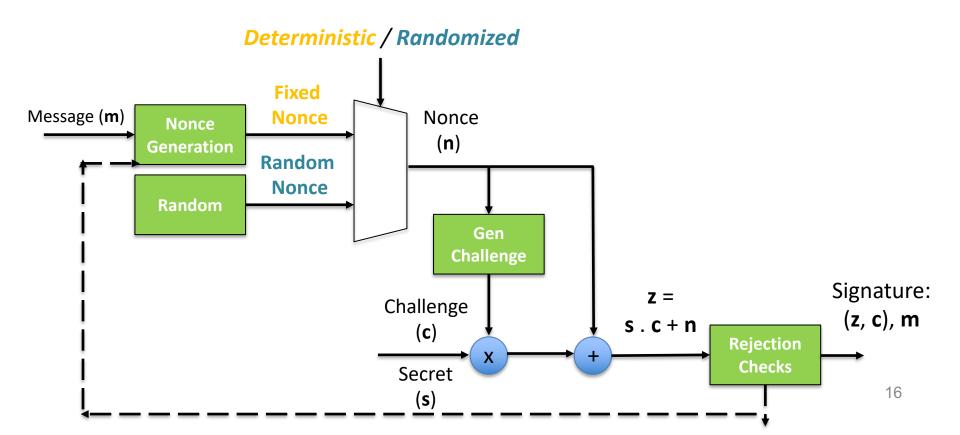
NTT Fault Vulnerability: Zeroization of Twiddle Constants



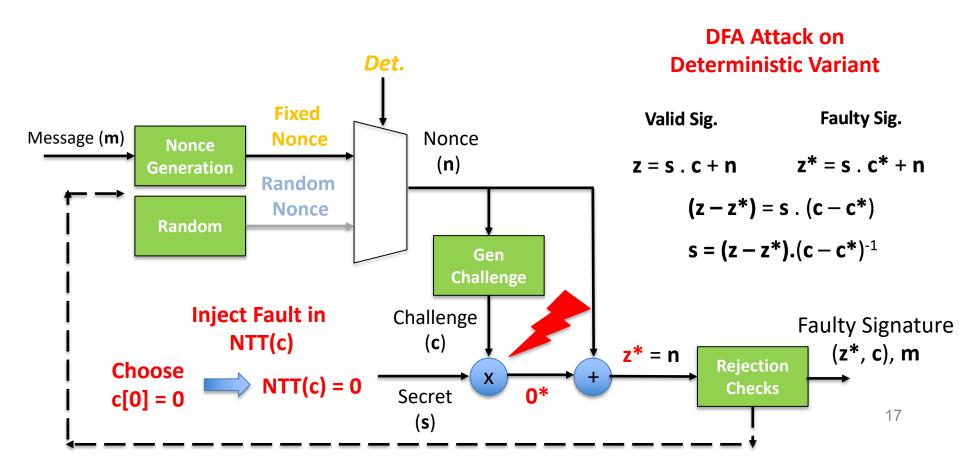

- ☐ But, we experimentally observed that fault on one NTT is sufficient
- ☐ Maybe faulty twiddle pointer is cached and reused for **k** NTTs

- ☐ Kyber uses Incomplete NTT
 - 7 layers (256 point NTT)
 - ☐ Two non zero coeff. at NTT output
- ☐ Dilithium uses complete NTT
 - 8 layers (256 point NTT)
 - ☐ One non-zero coeff. At NTT output

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

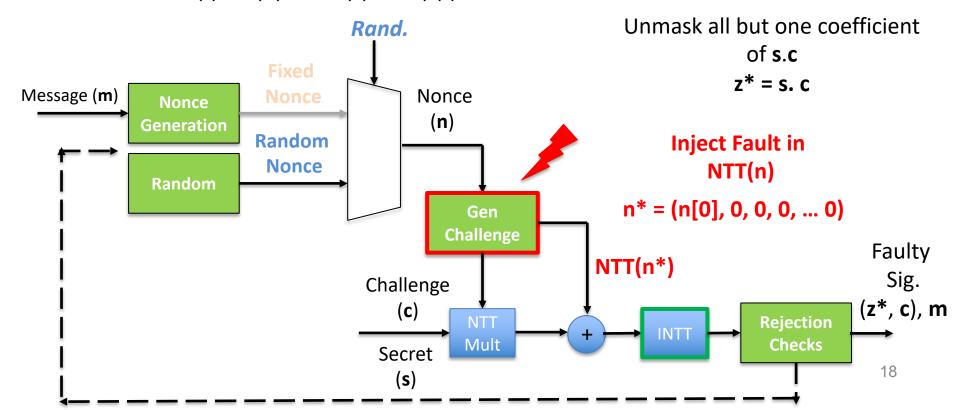


- Same Secret (s*) in NTT domain is used for Decaps
 - To avoid extra NTT/INTT conversions
 - Originally sampled secret s is forgotten!!!
 - Memoryless property of Kyber
- Attack also applies to masked implementations
 - Repeat Same Fault on All Shares (Experimentally verified)

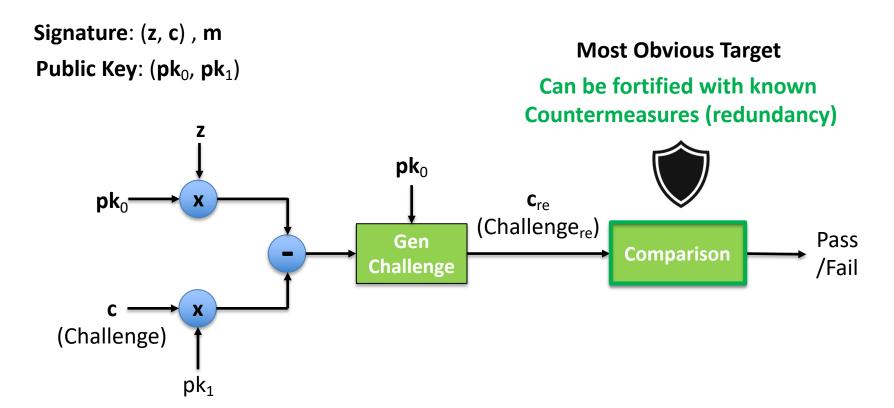


- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

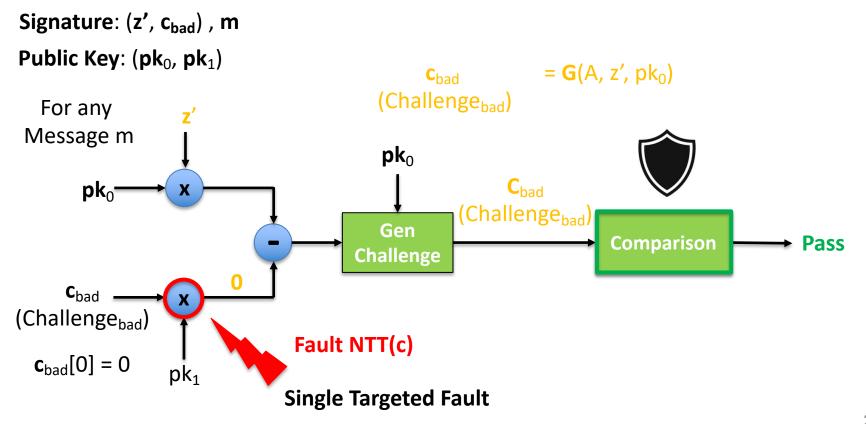
FIA on Dilithium Signing: Background


FIA on Dilithium Signing: Deterministic Variant

FIA on Dilithium Signing: Randomized Variant


Impl. Variant: z is computed in the NTT Domain

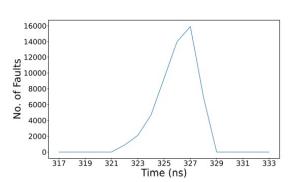
$$z = INTT((NTT(n) + NTT(s). NTT(c))$$



- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- Conclusion

FIA on Verification Procedure

FIA on Verification Procedure

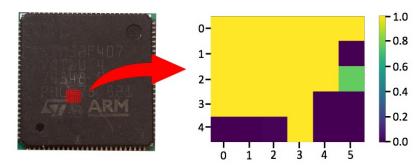

Experimental Evaluation

Experimental validation was done using Electromagnetic Fault Injection (EMFI)
 Target: □ Optimized implementations of Kyber and Dilithium from the pqm4 library [KRSS19] on the ARM Cortex-M4 MCU
We were able to achieve 100% fault repeatability using several fault parameters □ 25% of random memory locations in the memory space fetch zero twiddle factor arrays □ Very repeatable fault can be achieved when targeting data transfer from flash memory [MBD+19]
Our attack is orthogonal to fault countermeasures against prior FIA on Kyber and Dilithium

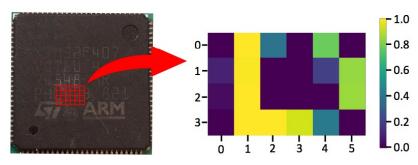
[KRSS19] Kannwischer, Matthias J., Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4." (2019).

[MBD⁺19] Menu, Alexandre, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, and Jean-Luc Danger. "Precise spatio-temporal electromagnetic fault injections on data transfers." In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1-8. IEEE, 2019.

Experimental Evaluation (Kyber)

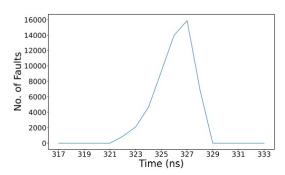


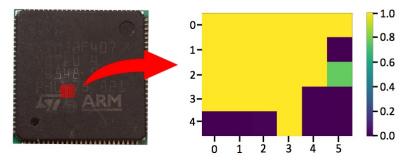
Number of Faults Versus Time


Number of Faults Versus Time

Key Generation

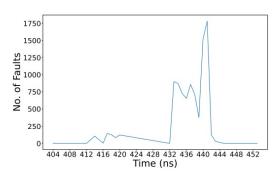
Fault Repeatability versus Location


Encapsulation

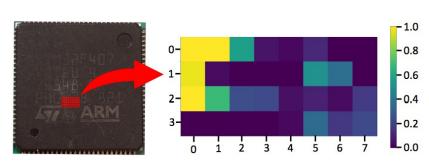

Fault Repeatability versus Location

Experimental Evaluation (Dilithium)

Signing (Deterministic)

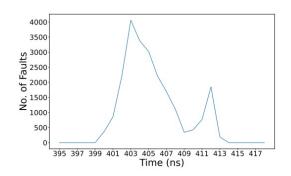


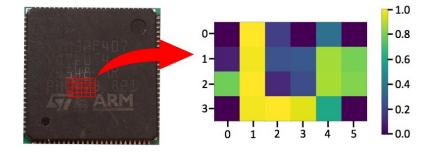
Number of Faults Versus Time



Fault Repeatability versus Location

Signing (Probabilistic)

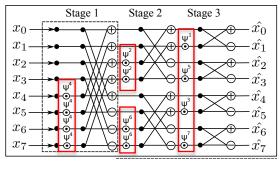

Number of Faults Versus Time


Fault Repeatability versus Location

Experimental Evaluation (Dilithium)

Verification

Number of Faults Versus Time



Fault Repeatability versus Location

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- **□** Countermeasures
- Conclusion

Countermeasures: Protect NTT against FIA

- **Countermeasure-1**: Sanity Check on Twiddle Constants
 - Check Arithmetic Properties of Twiddle Constants:
 - nth root of unity
 - Check Entropy of Twiddle Constants
- **Countermeasure-2**: Sanity Check on NTT Outputs
 - Check Entropy of NTT Outputs
- Countermeasure-3: Do rely on single base address to access Twiddle Constant Array

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- **□** Countermeasures
- **□** Conclusion

Conclusion

3	In this work, we proposed the first practical FIA on the NTT:
	☐ Single Point of Failure in assembly-optimized NTT implementations for Kyber and Dilithium
	☐ Allows to zeroize entire twiddle factor array with a single fault
	☐ Practical Attacks on Kyber and Dilithium
	☐ Practical experimental validation using EMFI on implementations of Kyber and Dilithium in the pqm4 library with 100% success rate
	☐ Our attack is able to circumvent several fault countermeasures for Kyber and Dilithium
	☐ Dedicated countermeasures for the NTT implementation are necessary to defeat the attack

Thank you!

Prasanna Ravi, Temasek Labs, NTU Singapore

E-mail: prasanna.ravi@ntu.edu.sg

GitHub: https://github.com/PRASANNA-RAVI