NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Fiddling the Twiddle Constants:
Fault Injection Analysis of the
Number Theoretic Transform

1 T

Prasanna Ravil, Bolin Yang?, u--\:‘ l’

AT
Shivam Bhasin!, Anupam f
Chattopadhyay??, Fan Zhang3

Temasek Labs, NTU, Singapore

2School of Computer Science and Engineering, NTU
Singapore

3College of Information Science and Electronic
Engineering, Zhejiang University, China

TCHES 2023, 11th September 2023

Outline

] Motivation

U FIA on Kyber
U FIA on Key Generation

[FIA on Dilithium

U FIA on Signing
U FIA on Verification

[Conclusion

Outline

] Motivation

J FIA on Kyber
[FIA on Key Generation

[FIA on Dilithium
U FIA on Signing
(] FIA on Verification

[Conclusion

Motivation

0 Kyber and Dilithium are Lattice-based schemes selected by NIST for PQC Standardization

O They share several common features:
O Hardness based on Module Learning With Error (MLWE) Problem

O Operate over Similar Polynomial Rings, leading to similar polynomial arithmetic operations
O Share common Building Blocks:

O Centered Binomial Sampler (CBD)

L Number Theoretic Transform (NTT)

O Any implementation weakness in these building blocks will simultaneously affect both the schemes

O NTT operates over sensitive variables (secret key): attractive target for SCA and FIA
O While NTT has been subjected to several types of SCA, so far no FIA has been performed

Our Work

O We proposed the first practical FIA on the NTT:

a

a

New Fault Target: Single Point of Failure in open-source NTT implementations for the ARM
Cortex-M4 Microcontroller
Allows us to zeroize all twiddle constants of NTT using a single fault
0 Reduces the entropy of sensitive variables in Kyber and Dilithium
Kyber:
0 Key Recovery Attacks (Key Generation)
L Message Recovery Attacks (Encapsulation)
Dilithium:
O Signature Forgery Attacks (Signing)
O Verification Bypass Attacks (Verification)

Experimentally validated using Electromagnetic Fault Injection (EMFI) with 100% success rate

Our attacks are able to bypass several fault injection countermeasures proposed for Kyber
and Dilithium.

Outline

U FIA on Kyber
U FIA on Key Generation

FIA on Kyber KeyGen

2a

Alice

Key
Generation

Secret Key
(sk)

Decapsulation

Shared Session Key (K)

— (pk¥)

Public Key*

Ciphertext
(ct)

Encapsulation

v

Shared Session Key (K)

O Single execution to target Key Generation: Key Recovery Attack
L Recover Secret key from Faulty but valid Public Key

Kyber KeyGen

seed seed

tI’E Sampler

Public Key (pk): (a,t)
Secret Key (sk): (s)

t=as+te
(LWE Instance)

Kyber KeyGen

seed seed

Sampler

— Public Key (pk): (a,t)
e Secret Key (sk): (s)

Sampler F t=as+e
(Uniform))

(LWE Instance)

Polynomial multiplication is done
using Number Theoretic Transform (NTT) m';’ a.s

NTT Fault Vulnerability

s’ e
Stage 1 Stage 2 Stage 3

Zo S — Dr—re D— 2o
e N
x1 . :\ /:'—z;\/; ® -Xg—fﬁl
w ~
T2 — 1® OT—=T1* D— T2
3 [>T
I3 = ® t o7 T3
T Di—e : ° D—2,
MO 4 Y S A Y =
L5 Of—T1* DO T
o ¥ 1 /\: y’ SO %6
D0 WA AN i

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Manipulation of Twiddle Constants
Bare metal Software Implementation

Implementation Style used in all open-source optimized
implementations of Kyber and Dilithium for ARM Cortex-M4 Processor
[BKS19, ABCG20, AHKS22, GKOS18, GKS21]

Flash Memory

Tw_Addr

CPU

Tw_Addr 1. Fetch

Tw Addr
Twiddle Factor L - N 2. Fetch from
Array P . (Tw_Addr + j)
For jth twiddle factor

4

Main Observation: Tw_Addr is used as base-address to calculate
address for all constants
Fault Vulnerability: Can an attacker fault the base address?

NTT Fault Vulnerability Manipulation of Twiddle Constants

—
s s’

Stage 1 Stage 2 Stage 3
L) —tre—eo—D—e——D—re—D— L0
e N
T . :\ /::'F;\/; O -Xg—l‘l
T2 — > * OTs ® D— T2
I3 = ® t 2108 g © T3
T Di—e : ° D—2,
0) A T =Sy
A\ e 5
g y° o
o o' e % N G
SN WA AN o

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware
Binary

Bare metal Software Implementation

Implementation Style used in all open-source optimized
implementations of Kyber and Dilithium for ARM Cortex-M4 Processor

e [BKS19, ABCG20, AHKS22, GKOS18, GKS21]

Flash Memory

Tw_Addr
Tw_Addr 1. Fetch CPU
" Tw Addr*
Twiddle Factor L - N 2. Fetch
Array P . (TW_Add r* + j)
Tw Addr* For jth twiddle factor
D000

Fault Model: Bit Set, Reset Faults on data transferred from flash memory [MBD*19]
Observation: Can zeroize the entire twiddle factor array in a single fault
25% of random memory locations yield zeros on ARM Cortex-M4 processor

[MBD*19] Menu, Alexandre, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, and Jean-Luc Danger. "Precise spatio-temporal electromagnetic fault injections
on data transfers." In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1-8. IEEE, 2019.

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Algorithm 3 Assembly Optimized NTT of Kyber in pgm4 library [KRSS19] (Simplified)

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31

1
2
3
4:
5:
6.
7
8

: ldr 11, [pe, #4] > Loading twiddle-ptr from address (pc+4) to register rl
Start of NTT Assembly Routine
n <+ 16
: while n > 0 do > First stage (Stage 1,2,3)
: load poly
ldrh twiddle, [twiddle-ptr] > Loading twiddle from twiddle-ptr
doublebutter fly (poly, twiddle)
ldr twiddle, [twiddle-ptr, #2] > Loading twiddle from (twiddle-ptr+2)
doublebutter fly (poly, twiddle)
n——
end while
add twiddle-ptr, #14 > Incrementing twiddle-ptr by 14 for next stage
n+ 8
while n > 0 do > Second stage (Stage 4,5,6)
m <2
while m > 0 do
load poly
ldrh twiddle, [twiddle-ptr] > Loading twiddle from twiddle-ptr
doublebutter fly (poly, twiddle)
ldr twiddle, [twiddle-ptr, #2] > Loading twiddle from (twiddle-ptr+2)
doublebutter fly (poly, twiddle)
m——
end while
add twiddle-ptr, #14 > Incrementing twiddle-ptr by 14 for next stage
n——
> Last stage (Stage 7)
: end while

Load Twiddle Pointer from Flash

Load from Twiddle Pointer*
Load from Twiddle Pointer*

Increment Twiddle Pointer*

Load from Twiddle Pointer*
Load from Twiddle Pointer*

Increment Twiddle Pointer*

Corrupts
all
twiddle
constants

NTT Fault Vulnerability: Zeroization of Twiddle Constants

’

d d
 ——
— . Valid Secret, but with
\ — Rl 25 Low Entropy
S NTT(s*)
Faulty secret s*
Entropy reduces by half in every NTT layer [so[st[ofofooo o]
CEEEEEEE
O Secret s has k polynomials O Kyber uses Incomplete NTT
O kNTTs O 7 layers (256 point NTT)

O Two non zero coeff. at NTT output
O But, we experimentally observed that

fault on one NTT is sufficient O Dilithium uses complete NTT
O 8 layers (256 point NTT)
O Maybe faulty twiddle pointer is cached 0 One non-zero coeff. At NTT output

and reused for k NTTs

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

€ Public Key (pk): (a,t)
Secret Key (sk): (s*)

& »t*=as*+e
Valid (pk,sk)

Alice Bob
* Same Secret (s*) in NTT domain is used for Decaps (S \ | pubic ey
* To avoid extra NTT/INTT conversions ™ (P)
. io] ' 11 \>
Originally sampled secret s is forgotten!!! Secret Key
sk*
* Memoryless property of Kyber - %
(sk*) " (ct)
* Attack also applies to masked implementations]

* Repeat Same Fault on All Shares (Experimentally verified) Shared Session Key (K) Shared Session Key (K)

Outline

U FIA on Dilithium
U FIA on Signing

15

FIA on Dilithium Signing: Background

/ Randomized

1

Signature:
(z,c), m

ey

Message (m) Nonce
— >
(n)
—— Random
| Nonce
I L
I , =
| Challenge B
I (C) K‘\ v S.C+n
A
> X >+
| Secret Z W
I

A

16

FIA on Dilithium Signing: Deterministic Variant

Message (m) = Nonce
g (n)
/

Choose
c[0]=0 : NTT(c) =0 Secret \v/ 0*
(s)

Inject Fault in Challenge
NTT(c) (c) o

DFA Attack on
Deterministic Variant

Valid Sig. Faulty Sig.
Z=s.c+n z*=s.c*+n
(z—2*)=s.(c—c*)

s=(z—-z*).(c—c*)*

Faulty Signature

Z* =n (z*, c), m
 ———

| 17

FIA on Dilithium Signing: Randomized Variant

Impl. Variant: z is computed in the NTT Domain
z=INTT((NTT(n) + NTT(s). NTT(c))

Rand. Unmask all but one coefficient
\l\ of s.c
* —
Message (m) Nonce Z” =s.C
(n)
—— Random Inject Fault in
Nonce : NTT(n)
P ‘ n* = (n[0], 0, 0, O, ... 0)
Fault
NTT(n*) "ty
Challenge Sig.

(S) I 18

|

|

|

|

: © g D (z*, ¢), m

—_— e

| Secret A

|

«

Outline

[FIA on Dilithium

[FIA on Verification

19

FIA on Verification Procedure

Signature: (z,c), m
Public Key: (pko, pk;)

pko

|
-

Most Obvious Target

Can be fortified with known
Countermeasures (redundancy)

(4

l Cre

C
(Challenge)

‘ ' (ChaIIengere)‘ Pass
]] /Fail

20

FIA on Verification Procedure

Signature: (Z’, cpag) , M
Public Key: (pko, pk;)

For any
Message m 1
pko
o) 1

Chad
(Challengepaq)

Fault NTT(c)
Coaal0] =0)

Single Targeted Fault

:I I—- Pass

21

Experimental Evaluation

O Experimental validation was done using Electromagnetic Fault Injection (EMFI)

O Target:
O Optimized implementations of Kyber and Dilithium from the pgm4 library [KRSS19] on the
ARM Cortex-M4 MCU

O We were able to achieve 100% fault repeatability using several fault parameters
O 25% of random memory locations in the memory space fetch zero twiddle factor arrays
O Very repeatable fault can be achieved when targeting data transfer from flash memory
[MBD*19]

O Our attack is orthogonal to fault countermeasures against prior FIA on Kyber and Dilithium

[KRSS19] Kannwischer, Matthias J., Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. "pgm4: Testing and Benchmarking NIST PQC on ARM Cortex-

M4." (2019).

[MBD*19] Menu, Alexandre, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, and Jean-Luc Danger. "Precise spatio-temporal electromagnetic fault injections
on data transfers." In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1-8. IEEE, 2019.

Experimental Evaluation (Kyber)

16000
14000
12000
10000
8000
6000

No. of Faults

4000
2000

/
/
V4
/

s“///

317 319 321 323. 325 327 329 331 333
Time (ns)

Number of Faults Versus Time

1000

No. of Faults
N B [« [+
o o o (=]
o o o o

o

g

420 422 424 426 428 430 432 434 436 438 440 442
Time (ns)

Number of Faults Versus Time

Key Generation

3

4

1.0
~0.8

0.6

0.4

| 0.2
6 1 2 3 #4 b5

Fault Repeatability versus Location

Encapsulation

~1.0

0~ 0.8

1 0.6

2 0.4

3+ 0.2
I I I

o 1 2 3 4 5 0.0

Fault Repeatability versus Location

23

Experimental Evaluation (Dilithium)

Signing (Deterministic)

16000
14000
12000
10000
8000
6000

No. of Faults

4000
2000

//

i

Number of Faults Versus Time

317 319 321 323 325 327 329 331 333
Time (ns)

0-
1-
2-
4 5

Fault Repeatability versus Location

Signing (Probabilistic)

404 408 412 416 420 424 428 432 436 440 444 448 452
Time (ns)

Number of Faults Versus Time

0

1;
2
3

‘
T

Fault Repeatability versus Location

g-1.0

~-0.8

0.6

0.4

0.2

0.0

1.0

0.8

24

Experimental Evaluation (Dilithium)

Verification
4000 I\ L
3500 “‘ A
3000 / \ 0.8
E 2500 “'
.."'é 2000 / \ 0.6
S 1500 / \
= 1000 / \ o3
500 / / 0.2
S N
395 397 399 401 403 405 407 409 411 413 415 417 00
Time (ns)
Number of Faults Versus Time Fault Repeatability versus Location

25

Outline

U FIA on Kyber:
[FIA on Key Generation

[FIA on Dilithium
U FIA on Signing
(] FIA on Verification

1 Countermeasures

[Conclusion

26

Countermeasures: Protect NTT against FIA

Zo

x1
T —

T3

T4
T5

Te

Z7

Stage 1 Stage 2 Stage 3
. f ° DT D .'L‘b
WA BV i =
2 =7
3 N I ! 2
R AN T =
4 N ™ T3
hd N o D ° n x?
' o :\/;sz_.xg:x}
¥ el XX e o
AR [AN =S
e < <= L7

Countermeasure-1: Sanity Check on Twiddle Constants
e Check Arithmetic Properties of Twiddle Constants:
* ntroot of unity
e Check Entropy of Twiddle Constants

Countermeasure-2: Sanity Check on NTT Outputs
e Check Entropy of NTT Outputs

Countermeasure-3: Do rely on single base address to
access Twiddle Constant Array

27

Outline

U FIA on Kyber:
[FIA on Key Generation

[FIA on Dilithium
U FIA on Signing
(] FIA on Verification

] Countermeasures

[Conclusion

28

Conclusion

O In this work, we proposed the first practical FIA on the NTT:

g

Q
Q
Q

U

U

Single Point of Failure in assembly-optimized NTT implementations for Kyber and Dilithium
Allows to zeroize entire twiddle factor array with a single fault
Practical Attacks on Kyber and Dilithium

Practical experimental validation using EMFI on implementations of Kyber and Dilithium in
the pgm4 library with 100% success rate

Our attack is able to circumvent several fault countermeasures for Kyber and Dilithium

Dedicated countermeasures for the NTT implementation are necessary to defeat the attack

Thank you!

Prasanna Ravi,
Temasek Labs, NTU Singapore

E-mail: prasanna.ravi@ntu.edu.sg
GitHub: https://github.com/PRASANNA-RAVI

mailto:prasanna.ravi@ntu.edu.sg
https://github.com/PRASANNA-RAVI

