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Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• The most powerful universal gate quantum computer: 160
physical qbits from IonQ.

• How many qubits do we need to break RSA-2048??
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• How many qubits do we need to break RSA-2048?? 4096
logical qubits ← Millions of physical qubits

• NIST process for standardization of Post-Quantum
Cryptography (PQC) is underway.

• Started in December 2017, 3-5 years analysis period, followed
by 2 years for draft standards.
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NIST PQC Call

Type Signatures KEM/Encryption Overall

Lattice-based 5 23 28
Code-based 3 17 20
Multivariate 8 2 10
Hash-based 3 0 3

Isogeny-based 0 1 1
Others 2 5 7

Total 21 48 69
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This Work

• Practical fault attacks against two deterministic lattice-based
signature schemes, Dilithium and qTESLA

• Demonstration of practicality of skip-addition fault attacks
proposed by Bindel et al. [1] through exploitation determinism
in lattice-based signature schemes.

• Signature forgery algorithm for Dilithium using retrieved part
of the secret key.

• Experimental validation through Electromagnetic fault
injection on implementations taken from the pqm4,
open-source benchmarking and testing framework for PQC
schemes on the ARM Cortex-M4 microcontroller.
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This Work

• We show that two well known countermeasures known to
protect against skip-addition fault attacks can be defeated.
This was also made possible owing to the deterministic nature
of Dilithium.

• We also propose a zero-cost mitigation approach against our
attack which exponentially increases attacker’s complexity.
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Lattice-based Cryptography

• Based on hard problems over geometric structures called
”lattices” in n-dimensional space

• Shortest Vector Problem (SVP), Closes Vector Problem
(CVP), Bounded Distance Decoding (BDD) problem

• Unique and Strong Security Guarantees: Average case hard
problems are as hard as worst-case instances of hard problems
in lattices

• Good Efficiency Guarantees: Computations over polynomials
in rings

• This makes lattice-based cryptographic schemes, one of the
leading candidates in the ongoing NIST standardization
process for post-quantum cryptography.
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Learning With Errors Problem (LWE)

• Well known Average case problem based on which multiple
lattice-based schemes are built.

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• More efficient variants of LWE known as Ring-LWE and
Module (LWE) which involve computation over polynomials in
rings.

• Ring-LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module-LWE: Rk×lq = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`
q ,

S ∈ R`
q, E ∈ Rk

q .
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Fault Injection Attacks

• Intentional manipulation to cause physical disturbance which
corrupts the behavior of device that runs cryptographic
implementations.

• Attacker analyzes faulty outputs to derive relation with the
secret key.
• Intentional Faults can be induced through multiple

techniques:
• Clock glitch, Voltage glitch
• Underpowering/Temperature
• Optical/Laser Fault Injection
• Electromagnetic Fault Injection
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Electromagnetic Fault Injection

• Injection of high voltage and short electromagnetic pulses
through micro-probes directly onto the chip.

• Loops inside the chip act as antennas and cause the EM
pulses to create additional ”Eddy-currents”.

• These additional currents cause unexpected changes to the
normal behaviour of the device.
• Advantages:

• Low-cost
• Non/Semi-invasive approach.
• Localized Effect → Controllability
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Dilithium Signature Scheme

• Dilithium is a lattice-based signature scheme based on the
hardness of MLWE and MSIS problems.

• Computation over modules in Rk×lq (Matrices/Vectors of
polynomials).

• Base Ring: Rq = Zq[X]/(Xn + 1) with n = 256 and q =
223 − 213 + 1.

• Built upon the ”Fiat-Shamir with Aborts” framework.

• Signing operation is iterative and repeated until signatures
satisfy a certain condition.
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Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN()

2: ρ, ρ′ ← {0, 1}256, K ← {0, 1}256, N := 0
3: For i from 0 to `− 1
4: s1[i] := Sample(PRF (ρ′, N))
5: N := N + 1
6: EndFor
7: For i from 0 to k − 1
8: s2[i] := Sample(PRF (ρ′, N))
9: N := N + 1
10: EndFor
11: A ∼ Rk×`q := ExpandA(ρ)
12: t = A · s1 + s2
13: t1 := Power2Roundq(t, d)
14: tr ∈ {0, 1}384 := CRH(ρ||t1)
15: Return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)
16: end procedure
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Dilithium Signature Scheme

1: procedure DILITHIUM.SIGN(sk,M)

2: A ∈ Rk×`q := ExpandA(ρ)
3: µ = CRH(tr‖M)
4: κ = 0, (z,h) = ⊥
5: While((z,h) = ⊥)
6: ρ = (K||µ) (ρ← {0, 1}384 for the randomized variant)
7: y ∈ S`γ1−1 := ExpandMask(ρ‖κ)
8: w = A · y
9: w1 = HBq(w, 2γ2)
10: c ∈ B60 = H(µ‖w1)
11: z = y + c · s1
12: (r1, r0) := Dq(w − c · s2, 2γ2)
13: If(‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1)
14: (z,h) = ⊥
15: Else
16: h = MHq(−c · t0,w − c · s2 + c · t0, 2γ2)
17: If(‖c · t0‖∞ ≥ γ2 or wt(h) > ω)
18: (z,h) = ⊥
19: EndIf κ = κ+ 1
20: EndWhile
21: Return σ = (z,h, c)
22: end procedure
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Adversary Model

• Attacker has complete physical access to the device.

• Trigger the device into computing signatures for the message
of the attacker’s choice.

• Attacker should have access to the computed signatures.
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Skip-Addition attacks on lattice-based signature
schemes

• Generation of the primary signature component z has been
the main target of most reported fault attacks [1, 2].

• zgen: z = s · c+ y ∈ Rq
• Bindel et al.[1] proposed the first targeted Skip-Addition

attacks on a number of lattice-based signature schemes
following the same framework.

• Base Idea: Skip the final addition in zgen to obtain the
following faulty output:

• ˆzgen: ẑ = s · c ∈ Rq
• ˆzgen: System of N linear equations with N ”unknowns“ - Solve

for coefficients of s using Gaussian Elimination
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Problems with the Skip-Addition attack

• Requires to skip addition corresponding to all coefficients of z
(numbering in the hundreds).

• Requires several hundreds of precisely targeted faults within
single run of the signing procedure.

• From a practical perspective: Totally infeasible.

• Attacker synchronization very difficult if not impossible in case
of probabilistic schemes.

• The ephemeral nonce y changes for every run of the signing
procedure.
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Problems with the Skip-Addition attack

• If the faulted computation resulted in z = y, then the attack
does not work on probabilistic signature schemes.

• This was proposed as a potential countermeasure against
Skip-Addition fault attacks [1].
• Three Problems:

• Large Number of Faults
• Attacker Synchronization
• Simple Countermeasure

• We will show that determinism can be exploited to easily
defeat the above problems to perform practical fault attacks
on Dilithium and qTESLA.
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Main Attack Idea

• Fault individual coefficients of z one at a time and aggregate
information over multiple faulty signatures to obtain the
secret key s.

• We consider two cases based on the order of operands in the
addition operation in zgen.

• Case-1:
z = s · c
z = z+ y
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Main Attack Idea

• The attacker similarly faults the addition operation
corresponding to the other N − 1 coefficients to obtain all the
coefficients of s · c.

• Since c is known, s can be recovered through Gaussian
elimination.
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Main Attack Idea

• Case-2:
z = y

z = z+ s · c

• (ẑ)t = (y)t for t ∈ {0, N − 1}
• But, since the attacker has access to the correct coefficient of
z (i.e) zt = (y)t + (s · c)t, he can compute (s · c)t as follows:

• (s · c)t = (z)t − (ẑ)t

• The attacker similarly faults the addition operation
corresponding to the other N − 1 coefficients to obtain all the
coefficients of s · c.

• Since c is known, s can be recovered through Gaussian
elimination.
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How Determinism helps the fault attacker?

• Attacking individual coefficients is possible because the time
instance of operation remains the same, given the same
inputs.

• Determinism also allows to compare the correct and faulty
outputs corresponding to the same inputs.
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Forging signatures for Dilithium

• Through the fault attack, we can recover s1.

• Moreover, there are other components of the secret key since
sk = (s1, s2,K, tr, t0).

• The scheme does not prove knowledge of K, tr and hence
attacker can use random K, tr.

• Retrieval of s1 enables us to create (z, c).

• But, the attacker still needs to construct the hint vector h
since σ = (z,h, c).

• Thus, the attacker has to bypass use of s2, t0.
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Forging signatures for Dilithium

• We also found that the scheme also does not really prove
knowledge of s2 since the public key is a rounded off version
of the LWE instance.

• We were able to reverse-calculate the remaining hint vector h
just based on the knowledge of s1.

• The s1 component of the secret key is the most crucial with
respect of security of Dilithium signature scheme.
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Experimental Validation on ARM Cortex-M4

• We target reference implementations of Dilithium and
qTESLA from the pqm4 benchmarking framework for PQC
candidates on the ARM Cortex-M4 microcontroller.

• Implementations were ported to the STM32F4DISCOVERY
board (DUT) housing the STM32F407 microcontroller.

• Clock Frequency: 24 MHz.

• We used Electromagnetic Fault Injection (EMFI) to induce
transient faults into the device.
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Experimental Setup

PC

EM pulse 
generator

DUT 
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Figure: Description of our EMFI setup
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Experimental Setup

Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F
Discovery Board (DUT) (4) Arudino based Relay Shield (5) Controller
Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table
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Experimental Setup

(a) (b)

Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed
over the DUT
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Analysis of implementation for Fault Vulnerability

• Precise identification of instruction to be targeted and the
required fault model.
• We consider three different variants of the zgen operation.

• Variant-1: Adding y to z = s · c
• Variant-2: Adding s · c to z = y
• Variant-3: Prevent overwriting the result onto either y or s · c

• While the first two variants are based on the order of the
operands, the third variant is based on writing the result of
the addition to a new variable.
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Variant-1: Adding y to z = s · c
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Variant-1: Adding y to z = s · c
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Variant-1: Adding y to z = s · c
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Variant-2: Adding s · c to z = y
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Variant-2: Adding s · c to z = y

40 / 56



Variant-2: Adding s · c to z = y
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Variant-3: Prevent overwriting the result onto either
y or s · c
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Variant-3: Prevent overwriting the result onto either
y or s · c
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Variant-3: Prevent overwriting the result onto either
y or s · c
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Systematic Approach towards Targeted Fault
Injection

• Our attack requires to inject targeted faults at specific
instructions.

• How do we identify the time instance to fault?

• We use the EM/power side-channel and exploit determinism
in computations to precisely identify the time-instance to
inject fault.

• EM measurements are observed from the same DUT using a
near field probe and processed using a digital oscilloscope.
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Results on ARM Cortex-M4

• Required Fault:
• Variant-1&2: Skip-Store fault
• Variant-3: Skip-Add fault

• Profiled the ARM device to identify a fault sensitive region -
Area on top of the ”A” of the ARM logo of the
STM32M4F07 microcontroller.

• Achieved fault repeatability of almost 100% at the identified
location for effectively skipping the store instruction.

• Voltage:150V-200V, Pulse Width = 12ns, Rise-Time = 2 ns.
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Results on ARM Cortex-M4

• But, we were not able to achieve faults to precisely skip only
the add instruction with the current setup.

• But, a more powerful attacker with enhanced fault injection
capabilities can possibly mount an attack on the Variant-3
implementation as well.
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Zero-Cost Mitigation

• Generic Countermeasures: Double computation,
Verification-after-Sign.

• Remove determinism from signatures by randomly sampling
the nonce y.

• Number Theoretic Transform used to perform polynomial
multiplication

z = INTT(NTT(s1) ∗ NTT(c)) + y

• Observation: Our target addition operation is the last
operation operating over z.
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Zero-Cost Mitigation

• Fault in a single coefficient does not cause enough
perturbation to the z output for it to be rejected by the
signing procedure.

• We compute z such that the addition operation is pushed
deeper into the computation.

• Idea: Perform the Addition in the NTT domain.

z = INTT(NTT(s1) ∗ NTT(c) + NTT(y))

• The INTT operation performed after the faulty addition
operation, propagates the fault to all the coefficients of z.
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Zero-Cost Mitigation

• Structure of INTT operation:

• Coefficients of the faulty z are uniformly distributes in
[0, q − 1] while they are expected to be present in the interval
[0, γ1 − 1].

• Thus, faulted signatures would always be rejected with very
high probability!
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Zero-Cost Mitigation

• It would take 20 years to actually build the same system of
equations to recover s1 as opposed to just 621 seconds in
case of the unprotected implementation.

• We use the NTT as a fault propagation mechanism which
enables to reject faulty signatures.
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Conclusion

• Practical Skip-Addition fault attacks against two deterministic
lattice-based signature schemes, Dilithium and qTESLA.

• Signature forgery algorithm for Dilithium using retrieved part
of the secret key.

• Experimental validation through Electromagnetic fault
injection on implementations taken from the pqm4,
open-source benchmarking and testing framework for PQC
schemes on the ARM Cortex-M4 microcontroller.

• We show that two well known countermeasures known to
protect against skip-addition fault attacks can be defeated.
This was also made possible owing to the deterministic nature
of Dilithium.
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Conclusion

• We also propose a zero-cost mitigation approach using the
Number Theoretic Transform (NTT) as an in-built fault
propagation mechanism with lattice-based signature schemes.
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Thank you!
Any questions?
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