Exploiting Determinism in Lattice-based Signatures Practical Fault Attacks on pqm4 Implementations of NIST candidates

Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, Shivam Bhasin

ACM AsiaCCS-2019 10th July 2019

Table of Contents
(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Table of Contents

(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- How many qubits do we need to break RSA-2048??

Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, lonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits \leftarrow Millions of physical qubits

Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, lonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits \leftarrow Millions of physical qubits
- NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.

Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, lonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits \leftarrow Millions of physical qubits
- NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.
- Started in December 2017, 3-5 years analysis period, followed by 2 years for draft standards.

NIST PQC Call

Type	Signatures	KEM/Encryption	Overall
Lattice-based	5	23	28
Code-based	3	17	20
Multivariate	8	2	10
Hash-based	3	0	3
Isogeny-based	0	1	1
Others	2	5	7
Total	21	48	69

NIST PQC Call

Type	Signatures	KEM/Encryption	Overall
Lattice-based	3	9	12
Code-based	0	7	7
Multivariate	4	0	4
Hash-based	2	-	2
Isogeny-based	0	1	1
Others	0	0	0
Total	9	17	26

NIST PQC Call

Type	Signatures	KEM/Encryption	Overall
Lattice-based	2	5	7
Code-based	0	3	3
Multivariate	2	0	2
Hash-based	2	0	2
Isogeny-based	0	1	1
Others	0	0	0
Total	6	9	15

This Work

- Practical fault attacks against two deterministic lattice-based signature schemes, Dilithium and qTESLA
- Demonstration of practicality of skip-addition fault attacks proposed by Bindel et al. [1] through exploitation determinism in lattice-based signature schemes.
- Signature forgery algorithm for Dilithium using retrieved part of the secret key.
- Experimental validation through Electromagnetic fault injection on implementations taken from the pqm4, open-source benchmarking and testing framework for PQC schemes on the ARM Cortex-M4 microcontroller.

This Work

- We show that two well known countermeasures known to protect against skip-addition fault attacks can be defeated. This was also made possible owing to the deterministic nature of Dilithium.
- We also propose a zero-cost mitigation approach against our attack which exponentially increases attacker's complexity.

Table of Contents
(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Lattice-based Cryptography

- Based on hard problems over geometric structures called "lattices" in n-dimensional space
- Shortest Vector Problem (SVP), Closes Vector Problem (CVP), Bounded Distance Decoding (BDD) problem
- Unique and Strong Security Guarantees: Average case hard problems are as hard as worst-case instances of hard problems in lattices
- Good Efficiency Guarantees: Computations over polynomials in rings
- This makes lattice-based cryptographic schemes, one of the leading candidates in the ongoing NIST standardization process for post-quantum cryptography.

Learning With Errors Problem (LWE)

- Well known Average case problem based on which multiple lattice-based schemes are built.
- Let $\mathbf{A} \in \mathbb{Z}_{q}^{n \times n}$ and $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_{q}^{n} \leftarrow D_{\sigma}$
- $\mathbf{T}=(\mathbf{A} \times \mathbf{S}+\mathbf{E}) \in \mathbb{Z}_{q}^{n}$
- Search LWE: Given several pairs (A, T), find \mathbf{S}.
- Decisional LWE: Distinguish between valid LWE pairs (A, T) from uniformly random samples in $\left(\mathbb{Z}_{q}^{n \times n} \times \mathbb{Z}_{q}^{n}\right)$.
- More efficient variants of LWE known as Ring-LWE and Module (LWE) which involve computation over polynomials in rings.
- Ring-LWE: $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with $\mathbf{A}, \mathbf{S}, \mathbf{E} \in \mathbf{R}_{q}$.
- Module-LWE: $R_{q}^{k \times l}=\left(\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)\right)^{k \times l}$ with $\mathbf{A} \in \mathbf{R}_{q}^{k \times \ell}$, $\mathbf{S} \in \mathbf{R}_{q}^{\ell}, \mathbf{E} \in \mathbf{R}_{q}^{k}$.

Fault Injection Attacks

- Intentional manipulation to cause physical disturbance which corrupts the behavior of device that runs cryptographic implementations.
- Attacker analyzes faulty outputs to derive relation with the secret key.
- Intentional Faults can be induced through multiple techniques:
- Clock glitch, Voltage glitch
- Underpowering/Temperature
- Optical/Laser Fault Injection
- Electromagnetic Fault Injection

Electromagnetic Fault Injection

- Injection of high voltage and short electromagnetic pulses through micro-probes directly onto the chip.
- Loops inside the chip act as antennas and cause the EM pulses to create additional "Eddy-currents".
- These additional currents cause unexpected changes to the normal behaviour of the device.
- Advantages:
- Low-cost
- Non/Semi-invasive approach.
- Localized Effect \rightarrow Controllability

Dilithium Signature Scheme

- Dilithium is a lattice-based signature scheme based on the hardness of MLWE and MSIS problems.
- Computation over modules in $R_{q}^{k \times l}$ (Matrices/Vectors of polynomials).
- Base Ring: $\mathbf{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with $\mathrm{n}=256$ and $\mathrm{q}=$ $2^{23}-2^{13}+1$.
- Built upon the "Fiat-Shamir with Aborts" framework.
- Signing operation is iterative and repeated until signatures satisfy a certain condition.

Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN ()
2: $\quad \rho, \rho^{\prime} \leftarrow\{0,1\}^{256}, K \leftarrow\{0,1\}^{256}, N:=0$
3: For i from 0 to $\ell-1$
4: $\quad \mathbf{s}_{1}[i]:=\operatorname{Sample}\left(\operatorname{PRF}\left(\rho^{\prime}, N\right)\right)$
5: $\quad N:=N+1$
6: EndFor
7: For i from 0 to $k-1$
8: $\quad \mathbf{s}_{2}[i]:=\operatorname{Sample}\left(\operatorname{PRF}\left(\rho^{\prime}, N\right)\right)$
9: $\quad N:=N+1$
10: EndFor
11: $\quad \mathbf{A} \sim R_{q}^{k \times \ell}:=\operatorname{Expand} \mathrm{A}(\rho)$
12: $\quad \mathbf{t}=\mathbf{A} \cdot \mathbf{s}_{1}+\mathbf{s}_{2}$
13: $\quad \mathbf{t}_{1}:=$ Power2Round $_{q}(\mathbf{t}, d)$
14: $\quad \operatorname{tr} \in\{0,1\}^{384}:=\operatorname{CRH}\left(\rho| | \mathbf{t}_{1}\right)$
15: \quad Return $p k=\left(\rho, \mathbf{t}_{1}\right), s k=\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right)$
16: end procedure

Dilithium Signature Scheme

1: procedure DILITHIUM.SIGN $(s k, M)$
2: $\quad \mathbf{A} \in R_{q}^{k \times \ell}:=\operatorname{ExpandA}(\rho)$
3: $\quad \mu=\mathrm{CRH}(\operatorname{tr} \| M)$
4: $\quad \kappa=0,(\mathbf{z}, \mathbf{h})=\perp$
5: While $((\mathbf{z}, \mathbf{h})=\perp)$
6: $\quad \rho=(K \| \mu)\left(\rho \leftarrow\{0,1\}^{384}\right.$ for the randomized variant)
7: $\quad \mathbf{y} \in S_{\gamma_{1}-1}^{\ell}:=$ ExpandMask $(\rho \| \kappa)$
8: $\quad \mathbf{w}=\mathbf{A} \cdot \mathbf{y}$
9: $\quad \mathbf{w}_{1}=\mathrm{HB}_{q}\left(\mathbf{w}, 2 \gamma_{2}\right)$
10: $\quad \mathbf{c} \in B_{60}=H\left(\mu \| \mathbf{w}_{1}\right)$
11: $\quad \mathbf{z}=\mathbf{y}+\mathbf{c} \cdot \mathbf{s}_{1}$
12: $\quad\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right):=\mathrm{D}_{q}\left(\mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}, 2 \gamma_{2}\right)$
13: $\operatorname{If}\left(\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta\right.$ or $\left\|\mathbf{r}_{0}\right\|_{\infty} \geq \gamma_{2}-\beta$ or $\left.\mathbf{r}_{1} \neq \mathbf{w}_{1}\right)$
14: $\quad(\mathbf{z}, \mathbf{h})=\perp$
15: Else
16: $\quad \mathbf{h}=\mathrm{MH}_{q}\left(-\mathbf{c} \cdot \mathbf{t}_{0}, \mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}+\mathbf{c} \cdot \mathbf{t}_{0}, 2 \gamma_{2}\right)$
17: $\operatorname{If}\left(\left\|\mathbf{c} \cdot \mathbf{t}_{0}\right\|_{\infty} \geq \gamma_{2}\right.$ or $\left.w t(\mathbf{h})>\omega\right)$
18: $\quad(\mathbf{z}, \mathbf{h})=\perp$
19: Endlf $\kappa=\kappa+1$
20: EndWhile
21: \quad Return $\sigma=(\mathbf{z}, \mathbf{h}, \mathbf{c})$
22: end procedure

Dilithium Signature Scheme

```
procedure DILITHIUM.SIGN ( \(s k, M\) )
    \(\mathbf{A} \in R_{q}^{k \times \ell}:=\operatorname{ExpandA}(\rho)\)
    \(\mu=\mathrm{CRH}(\operatorname{tr} \| M)\)
    \(\kappa=0,(\mathbf{z}, \mathbf{h})=\perp\)
    While \(((\mathbf{z}, \mathbf{h})=\perp)\)
    \(\rho=(K \| \mu)\left(\rho \leftarrow\{0,1\}^{384}\right.\) for the randomized variant \()\)
    \(\mathbf{y} \in S_{\gamma_{1}-1}^{\ell}:=\operatorname{ExpandMask}(\rho \| \kappa)\)
    \(\mathbf{w}=\mathbf{A} \cdot \mathbf{y}\)
    \(\mathbf{w}_{1}=\mathrm{HB}_{q}\left(\mathbf{w}, 2 \gamma_{2}\right)\)
10: \(\quad \mathbf{c} \in B_{60}=H\left(\mu \| \mathbf{w}_{1}\right)\)
11: \(\quad \mathbf{z}=\mathbf{y}+\mathbf{c} \cdot \mathbf{s}_{1}\)
12: \(\quad\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right):=\mathrm{D}_{q}\left(\mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}, 2 \gamma_{2}\right)\)
13: \(\operatorname{If}\left(\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta\right.\) or \(\left\|\mathbf{r}_{0}\right\|_{\infty} \geq \gamma_{2}-\beta\) or \(\left.\mathbf{r}_{1} \neq \mathbf{w}_{1}\right)\)
14: \(\quad(\mathbf{z}, \mathbf{h})=\perp\)
15: Else
16: \(\quad \mathbf{h}=\mathrm{MH}_{q}\left(-\mathbf{c} \cdot \mathbf{t}_{0}, \mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}+\mathbf{c} \cdot \mathbf{t}_{0}, 2 \gamma_{2}\right)\)
17: \(\operatorname{If}\left(\left\|\mathbf{c} \cdot \mathbf{t}_{0}\right\|_{\infty} \geq \gamma_{2}\right.\) or \(\left.\mathbf{w t}(\mathbf{h})>\omega\right)\)
18: \(\quad(\mathbf{z}, \mathbf{h})=\perp\)
19: Endlf \(\kappa=\kappa+1\)
20: EndWhile
21: \(\quad\) Return \(\sigma=(\mathbf{z}, \mathbf{h}, \mathbf{c})\)
22: end procedure
```


Dilithium Signature Scheme

```
procedure DILITHIUM.SIGN ( \(s k, M\) )
    \(\mathbf{A} \in R_{q}^{k \times \ell}:=\operatorname{ExpandA}(\rho)\)
    \(\mu=\mathrm{CRH}(\operatorname{tr} \| M)\)
    \(\kappa=0,(\mathbf{z}, \mathbf{h})=\perp\)
    While \(((\mathbf{z}, \mathbf{h})=\perp)\)
    \(\rho=(K \| \mu)\left(\rho \leftarrow\{0,1\}^{384}\right.\) for the randomized variant \()\)
    \(\mathbf{y} \in S_{\gamma_{1}-1}^{\ell}:=\operatorname{ExpandMask}(\rho \| \kappa)\)
    \(\mathbf{w}=\mathbf{A} \cdot \mathbf{y}\)
    \(\mathbf{w}_{1}=\mathrm{HB}_{q}\left(\mathbf{w}, 2 \gamma_{2}\right)\)
    \(\mathbf{c} \in B_{60}=H\left(\mu \| \mathbf{w}_{1}\right)\)
    \(\mathbf{z}=\mathbf{y}+\mathbf{c} \cdot \mathbf{s}_{1}\)
    \(\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right):=\mathrm{D}_{q}\left(\mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}, 2 \gamma_{2}\right)\)
    \(\operatorname{If}\left(\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta\right.\) or \(\left\|\mathbf{r}_{0}\right\|_{\infty} \geq \gamma_{2}-\beta\) or \(\left.\mathbf{r}_{1} \neq \mathbf{w}_{1}\right)\)
    \((\mathbf{z}, \mathbf{h})=\perp\)
    Else
16: \(\quad \mathbf{h}=\mathrm{MH}_{q}\left(-\mathbf{c} \cdot \mathbf{t}_{0}, \mathbf{w}-\mathbf{c} \cdot \mathbf{s}_{2}+\mathbf{c} \cdot \mathbf{t}_{0}, 2 \gamma_{2}\right)\)
17: \(\operatorname{If}\left(\left\|\mathbf{c} \cdot \mathbf{t}_{0}\right\|_{\infty} \geq \gamma_{2}\right.\) or \(\left.\mathbf{w t}(\mathbf{h})>\omega\right)\)
18: \(\quad(\mathbf{z}, \mathbf{h})=\perp\)
19: Endlf \(\kappa=\kappa+1\)
20: EndWhile
    Return \(\sigma=(\mathbf{z}, \mathbf{h}, \mathbf{c})\)
    end procedure
```

Table of Contents
(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes

4 Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Adversary Model

- Attacker has complete physical access to the device.
- Trigger the device into computing signatures for the message of the attacker's choice.
- Attacker should have access to the computed signatures.

Skip-Addition attacks on lattice-based signature schemes

- Generation of the primary signature component \mathbf{z} has been the main target of most reported fault attacks [1, 2].
- $\mathrm{z}_{\text {gen }}: \mathbf{z}=\mathbf{s} \cdot \mathbf{c}+\mathbf{y} \in R_{q}$
- Bindel et al.[1] proposed the first targeted Skip-Addition attacks on a number of lattice-based signature schemes following the same framework.
- Base Idea: Skip the final addition in $\mathrm{z}_{\mathrm{gen}}$ to obtain the following faulty output:
- $\mathbf{z} \hat{g}{ }^{\text {gen }}: \hat{\mathbf{z}}=\mathbf{s} \cdot \mathbf{c} \in R_{q}$
- $z_{\text {gen }}$: System of N linear equations with N "unknowns" - Solve for coefficients of s using Gaussian Elimination

Problems with the Skip-Addition attack

- Requires to skip addition corresponding to all coefficients of \mathbf{z} (numbering in the hundreds).
- Requires several hundreds of precisely targeted faults within single run of the signing procedure.
- From a practical perspective: Totally infeasible.
- Attacker synchronization very difficult if not impossible in case of probabilistic schemes.
- The ephemeral nonce \mathbf{y} changes for every run of the signing procedure.

Problems with the Skip-Addition attack

Problems with the Skip-Addition attack

- If the faulted computation resulted in $\mathbf{z}=\mathbf{y}$, then the attack does not work on probabilistic signature schemes.
- This was proposed as a potential countermeasure against Skip-Addition fault attacks [1].
- Three Problems:
- Large Number of Faults
- Attacker Synchronization
- Simple Countermeasure
- We will show that determinism can be exploited to easily defeat the above problems to perform practical fault attacks on Dilithium and qTESLA.

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

\square

- $(\hat{\mathbf{z}})_{t}=(\mathbf{s} \cdot \mathbf{c})_{t}$ for $t \in\{0, N-1\}$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

- $(\hat{\mathbf{z}})_{t}=(\mathbf{s} \cdot \mathbf{c})_{t}$ for $t \in\{0, N-1\}$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

\square

- $(\hat{\mathbf{z}})_{t}=(\mathbf{s} \cdot \mathbf{c})_{t}$ for $t \in\{0, N-1\}$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

\square

- $(\hat{\mathbf{z}})_{t}=(\mathbf{s} \cdot \mathbf{c})_{t}$ for $t \in\{0, N-1\}$

Main Attack Idea

- Fault individual coefficients of \mathbf{z} one at a time and aggregate information over multiple faulty signatures to obtain the secret key s.
- We consider two cases based on the order of operands in the addition operation in $\mathrm{z}_{\text {gen }}$.
- Case-1:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{s} \cdot \mathbf{c} \\
& \mathbf{z}=\mathbf{z}+\mathbf{y}
\end{aligned}
$$

\square

- $(\hat{\mathbf{z}})_{t}=(\mathbf{s} \cdot \mathbf{c})_{t}$ for $t \in\{0, N-1\}$

Main Attack Idea

- The attacker similarly faults the addition operation corresponding to the other $N-1$ coefficients to obtain all the coefficients of $\mathbf{s} \cdot \mathbf{c}$.
- Since \mathbf{c} is known, s can be recovered through Gaussian elimination.

Main Attack Idea

- Case-2:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{y} \\
& \mathbf{z}=\mathbf{z}+\mathbf{s} \cdot \mathbf{c}
\end{aligned}
$$

- $(\hat{\mathbf{z}})_{t}=(\mathbf{y})_{t}$ for $t \in\{0, N-1\}$
- But, since the attacker has access to the correct coefficient of $\mathbf{z}($ i.e $) \mathbf{z}_{t}=(\mathbf{y})_{t}+(\mathbf{s} \cdot \mathbf{c})_{t}$, he can compute $(\mathbf{s} \cdot \mathbf{c})_{t}$ as follows:
- $(\mathbf{s} \cdot \mathbf{c})_{t}=(\mathbf{z})_{t}-(\hat{\mathbf{z}})_{t}$
- The attacker similarly faults the addition operation corresponding to the other $N-1$ coefficients to obtain all the coefficients of $\mathbf{s} \cdot \mathbf{c}$.
- Since \mathbf{c} is known, s can be recovered through Gaussian elimination.

How Determinism helps the fault attacker?

- Attacking individual coefficients is possible because the time instance of operation remains the same, given the same inputs.
- Determinism also allows to compare the correct and faulty outputs corresponding to the same inputs.

Forging signatures for Dilithium

- Through the fault attack, we can recover \mathbf{s}_{1}.
- Moreover, there are other components of the secret key since $s k=\left(\mathbf{s}_{1}, \mathbf{s}_{2}, K, t r, \mathbf{t}_{0}\right)$.
- The scheme does not prove knowledge of $K, t r$ and hence attacker can use random $K, t r$.
- Retrieval of \mathbf{s}_{1} enables us to create (\mathbf{z}, \mathbf{c}).
- But, the attacker still needs to construct the hint vector \mathbf{h} since $\sigma=(\mathbf{z}, \mathbf{h}, \mathbf{c})$.
- Thus, the attacker has to bypass use of $\mathbf{s}_{2}, \mathbf{t}_{0}$.

Forging signatures for Dilithium

- We also found that the scheme also does not really prove knowledge of \mathbf{s}_{2} since the public key is a rounded off version of the LWE instance.
- We were able to reverse-calculate the remaining hint vector \mathbf{h} just based on the knowledge of \mathbf{s}_{1}.
- The \mathbf{s}_{1} component of the secret key is the most crucial with respect of security of Dilithium signature scheme.

Table of Contents

(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation

6 Conclusion

Experimental Validation on ARM Cortex-M4

- We target reference implementations of Dilithium and qTESLA from the pqm4 benchmarking framework for PQC candidates on the ARM Cortex-M4 microcontroller.
- Implementations were ported to the STM32F4DISCOVERY board (DUT) housing the STM32F407 microcontroller.
- Clock Frequency: 24 MHz .
- We used Electromagnetic Fault Injection (EMFI) to induce transient faults into the device.

Experimental Setup

Figure: Description of our EMFI setup

Experimental Setup

Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F Discovery Board (DUT) (4) Arudino based Relay Shield (5) Controller Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table

Experimental Setup

(a)

(b)

Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed over the DUT

Analysis of implementation for Fault Vulnerability

- Precise identification of instruction to be targeted and the required fault model.
- We consider three different variants of the $z_{g e n}$ operation.
- Variant-1: Adding \mathbf{y} to $\mathbf{z}=\mathbf{s} \cdot \mathbf{c}$
- Variant-2: Adding $\mathbf{s} \cdot \mathbf{c}$ to $\mathbf{z}=\mathbf{y}$
- Variant-3: Prevent overwriting the result onto either y or s-c
- While the first two variants are based on the order of the operands, the third variant is based on writing the result of the addition to a new variable.

Variant-1: Adding \mathbf{y} to $\mathbf{z}=\mathbf{s} \cdot \mathbf{c}$

```
/* Sampling y */
for(i = 0; i < L; ++i)
    poly_unif_gamma1m1(y.vec+i, key, nonce ++);
/* Computing NTT(y) */
yhat = y;
polyvecl_ntt(&yhat);
/* Computing NTT(c) */
chat = c;
poly_ntt(&chat);
/* Computing product sc */
for(i = 0; i < L; ++i)
{
    poly_ptwise_imont(z.vec+i,&chat,s1.vec+i);
    poly_intt_mont(z.vec+i);
}
/* Last addition to generate z */
/* (y added to sc) */
polyvecl_add(&z,&y,&z);
```


Variant-1: Adding \mathbf{y} to $\mathbf{z}=\mathbf{s} \cdot \mathbf{c}$

```
1 LDR.W r3,[r4,# 4]! }\longrightarrow\mathrm{ Load z 
2 LDR.W r1,[r2,#4]! }\longrightarrow\mathrm{ Load yt
CMP r4,r5
4 ADD r3, r1 }\longrightarrow\mathrm{ Add zt, yt
5 /* Target store operation */
6 STR.W r3, [r0, #4]! }\longrightarrow\mathrm{ Store result in z }\mp@subsup{z}{t}{
```


Variant-1: Adding \mathbf{y} to $\mathbf{z}=\mathbf{s} \cdot \mathbf{c}$

Variant-2: Adding $\mathbf{s} \cdot \mathbf{c}$ to $\mathbf{z}=\mathbf{y}$

```
/* Sampling y in z */
for(i = 0; i < L; ++i)
    poly_unif_gamma1m1(z.vec+i, key, nonce ++);
/* Computing NTT(y) */
yhat = z;
polyvecl_ntt(&yhat);
/* Computing NTT(c) */
chat = c;
poly_ntt(&chat);
/* Computing product sc */
for(i = 0; i < L; ++i)
{
        poly_ptwise_imont(sc.vec+i,&chat,s1.vec+i);
        poly_intt_mont(sc.vec+i);
    }
    /* Last addition to generate z */
    /* (sc added to y) */
    polyvecl_add(&z,&sc,&z);
```


Variant-2: Adding $\mathbf{s} \cdot \mathbf{c}$ to $\mathbf{z}=\mathbf{y}$

```
1 LDR.W r3,[r4,#4]! }\longrightarrow\mathrm{ Load z 
2 LDR.W r1,[r2,#4]! }\longrightarrow\mathrm{ Load sc 
3 CMP r4,r5
4 ADD r3, r1 }\longrightarrow\mathrm{ Add z 
5 /* Target store operation */
6 STR.W r3, [r0, #4]! }\longrightarrow\mathrm{ Store result in }\mp@subsup{z}{t}{
```


Variant-2: Adding $\mathbf{s} \cdot \mathbf{c}$ to $\mathbf{z}=\mathbf{y}$

$$
\begin{aligned}
& 1 \text { LDR.W r3,[r4,\#4]! } \longrightarrow \text { Load } z_{t}=y_{t} \\
& 2 \text { LDR.W r1, [r2,\#4]! } \longrightarrow \text { Load SC } \\
& 3 \text { CMP r4, r5 } \\
& 4 \mathrm{ADD} \quad \mathrm{r} 3, \mathrm{r} 1 \quad \longrightarrow \mathrm{Add} \mathrm{z}_{\mathrm{t}}, \mathrm{SC}_{\mathrm{t}} \\
& 5 \text { /* Target store operation */ } \\
& 6 \text { STR.W r3, }[\mathrm{r} 0, \# 4]!\longrightarrow \text { Store result in } z_{t}
\end{aligned}
$$

Variant-3: Prevent overwriting the result onto either \mathbf{y} or $\mathbf{s} \cdot \mathbf{c}$

```
/* Sampling y */
for(i = 0; i < L; ++i)
    poly_unif_gamma1m1(y.vec+i, key, nonce ++);
/* Computing NTT(y) */
yhat = y;
polyvecl_ntt(&yhat);
/* Computing NTT(c) */
chat = c;
poly_ntt(&chat);
/* Computing product sc */
/* Result stored in ztemp */
for(i = 0; i < L; ++i)
{
    poly_ptwise_imont(ztemp.vec+i,& chat,s1.vec+i);
    poly_intt_mont(ztemp.vec+i);
}
        /* Last addition to generate z */
        /* Result stored in new variable z */
        polyvecl_add(&z,&y,&ztemp);
```

Variant-3: Prevent overwriting the result onto either y or $\mathbf{s} \cdot \mathbf{c}$

Variant-3: Prevent overwriting the result onto either y or $\mathbf{s} \cdot \mathbf{c}$

Systematic Approach towards Targeted Fault Injection

- Our attack requires to inject targeted faults at specific instructions.
- How do we identify the time instance to fault?
- We use the EM/power side-channel and exploit determinism in computations to precisely identify the time-instance to inject fault.
- EM measurements are observed from the same DUT using a near field probe and processed using a digital oscilloscope.

Results on ARM Cortex-M4

- Required Fault:
- Variant-1\&2: Skip-Store fault
- Variant-3: Skip-Add fault
- Profiled the ARM device to identify a fault sensitive region Area on top of the "A" of the ARM logo of the STM32M4F07 microcontroller.
- Achieved fault repeatability of almost 100% at the identified location for effectively skipping the store instruction.
- Voltage:150V-200V, Pulse Width $=12 \mathrm{~ns}$, Rise-Time $=2 \mathrm{~ns}$.

Results on ARM Cortex-M4

- But, we were not able to achieve faults to precisely skip only the add instruction with the current setup.
- But, a more powerful attacker with enhanced fault injection capabilities can possibly mount an attack on the Variant-3 implementation as well.

Table of Contents

(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Zero-Cost Mitigation

- Generic Countermeasures: Double computation, Verification-after-Sign.
- Remove determinism from signatures by randomly sampling the nonce \mathbf{y}.
- Number Theoretic Transform used to perform polynomial multiplication

$$
\mathbf{z}=\operatorname{INTT}\left(\operatorname{NTT}\left(\mathbf{s}_{1}\right) * \operatorname{NTT}(\mathbf{c})\right)+\mathbf{y}
$$

- Observation: Our target addition operation is the last operation operating over z.

Zero-Cost Mitigation

- Fault in a single coefficient does not cause enough perturbation to the \mathbf{z} output for it to be rejected by the signing procedure.
- We compute \mathbf{z} such that the addition operation is pushed deeper into the computation.
- Idea: Perform the Addition in the NTT domain.

$$
\mathbf{z}=\operatorname{INTT}\left(\operatorname{NTT}\left(\mathbf{s}_{1}\right) * \operatorname{NTT}(\mathbf{c})+\operatorname{NTT}(\mathbf{y})\right)
$$

- The INTT operation performed after the faulty addition operation, propagates the fault to all the coefficients of \mathbf{z}.

Zero-Cost Mitigation

- Structure of INTT operation:

- Coefficients of the faulty \mathbf{z} are uniformly distributes in [$0, q-1]$ while they are expected to be present in the interval $\left[0, \gamma_{1}-1\right]$.
- Thus, faulted signatures would always be rejected with very high probability!

Zero-Cost Mitigation

- It would take 20 years to actually build the same system of equations to recover \mathbf{s}_{1} as opposed to just 621 seconds in case of the unprotected implementation.
- We use the NTT as a fault propagation mechanism which enables to reject faulty signatures.

Table of Contents

(1) Context
(2) Background
(3) Attacking Deterministic Lattice-based Signature Schemes
(4) Experimental Validation
(5) Zero-cost Mitigation
(6) Conclusion

Conclusion

- Practical Skip-Addition fault attacks against two deterministic lattice-based signature schemes, Dilithium and qTESLA.
- Signature forgery algorithm for Dilithium using retrieved part of the secret key.
- Experimental validation through Electromagnetic fault injection on implementations taken from the pqm4, open-source benchmarking and testing framework for PQC schemes on the ARM Cortex-M4 microcontroller.
- We show that two well known countermeasures known to protect against skip-addition fault attacks can be defeated. This was also made possible owing to the deterministic nature of Dilithium.

Conclusion

- We also propose a zero-cost mitigation approach using the Number Theoretic Transform (NTT) as an in-built fault propagation mechanism with lattice-based signature schemes.

Thank you! Any questions?

Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signature schemes and their sensitivity to fault attacks.
In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016 Workshop on, pages 63-77. IEEE, 2016.

Thomas Espitau, Pierre-Alain Fouque, Benoit Gerard, and Mehdi Tibouchi.
Loop-abort faults on lattice-based signatures and key exchange protocols.
IEEE Transactions on Computers, 2018.

