

Will you Cross the Threshold for Me? Generic Side-Channel Assisted Chosen-Ciphertext Attacks on NTRU-based KEMs

Prasanna Ravi¹ Martianus Frederic Ezerman¹ Shivam Bhasin¹ Anupam Chattopadhyay¹ Sujoy Sinha Roy²

NTU Singapore
TU Graz, Austria
TCHES 2022, 21st Sep, 2022

Outline

Motivation

Background: NTRU-based KEMs

Given Side-Channel Assisted Chosen-Ciphertext Attacks:

- Plaintext Checking (PC) Oracle-based SCA
- Decryption Failure (DF) Oracle-based SCA
- **General Security of Content** Full Decryption (FD) Oracle-based SCA

Conclusion

Motivation

- Two categories of Lattice-based KEMs:
 - □ Learning With Errors/Rounding (LWE/LWR)
 - □ Nth order Truncated polynomial Ring Unit (NTRU)
- Lattice-based KEMs were heavily scrutinized by Side-Channel Analysis, particularly LWE/LWR-based KEMs.
- □ Major Category of Attacks:
 - □ SCA Assisted Chosen-Ciphertext Attacks (SCA Assisted CCA)
 - □ [DTV⁺19, RRC⁺20, RBR⁺20, XPR⁺20, GJN20, BDH⁺21, RRD⁺22, ...,]

Motivation

Main Features of SCA Assisted CCA:

- □ Fairly Generic Exploits inherent algorithmic properties of the scheme
- □ Minimal/No knowledge of implementation (HW/SW)
- □ Arguably the "Easiest SCA" on lattice-based KEMs

□ There are three different flavours of SCA Assisted CCA

- □ Plaintext-Checking (PC) Oracle-based SCA
- Decryption-Failure (DF) Oracle-based SCA
- □ Full-Decryption (FD) Oracle-based SCA

Motivation

Questions:

- □ Are similar attacks **possible** on NTRU-based KEMs?
- □ If so, are NTRU-based KEMs more **easy/difficult** to be attacked compared to LWE/LWR-based KEMs?

Our Contributions:

- We propose generic SCA assisted CCA on NTRU-based KEMs
 - □ NTRU (Finalist) and NTRU Prime (Alternate Finalist)
- **Approximately same effort** to break NTRU-based KEMs compared to LWE/LWR-based KEMs
- **No. of Queries/Traces:** Few hundred to Few thousand chosen-ciphertext queries
- □ Attack works for all parameters for NTRU and NTRU Prime with 100% success rate
- Experimental Validation using EM side-channel on *pqm4* library on the ARM Cortex-M4 microcontroller

Our Contribution

Outline

Motivation

Background: NTRU-based KEMs

Given Side-Channel Assisted Chosen-Ciphertext Attacks:

- Plaintext Checking (PC) Oracle-based SCA
- Decryption Failure (DF) Oracle-based SCA
- Full Decryption (FD) Oracle-based SCA

Conclusion

Key Encapsulation Mechanisms (KEMs)

□ KEM is a cryptographic primitive used to derive a shared key between two untrusted parties.

Three Procedures:

- □ Key Generation (KeyGen)
- Encapsulation (Encaps)
- Decapsulation (Decaps)

□ Alice can reuse her keypair (**pk**, **sk**) to generate multiple session keys (**K**).

Static Key Setting

Compromise of **sk** leads to recovery of all session keys (**K**).

Decapsulation in Lattice-based KEMs

IND-CCA Secure Decapsulation

Decapsulation: SCA-based Chosen-Ciphertext Attacks

Key Idea:

- Build ciphertexts in order to control value of secret dependent anchor variable
- Use side-channels as oracle to recover information about anchor variable
- Key Recovery

IND-CPA secure NTRU PKE (Simplified)

Generation:

Output: public key (pk), secret key (sk)

IND-CPA secure NTRU PKE (Simplified)

Outline

Motivation

Background: NTRU-based KEMs

Side-Channel Assisted Chosen-Ciphertext Attacks:
Plaintext Checking (PC) Oracle-based SCA

Decryption Failure (DF) Oracle-based SCA

Full Decryption (FD) Oracle-based SCA

Conclusion

Plaintext Checking (PC) Oracle-based SCA

□ Inspired from classical chosen-ciphertext attack on NTRU PKE by Jaulmes and Joux in Crypto 2000

Two Phases:

□ Pre-Processing Phase: Search for a base ciphertext (c_{base})

□ Leakage upon decryption reveals critical information about secret key

Key-Recovery Phase:

Use **c**_{base} to build attack ciphertexts (**c**_{attack}), whose leakage enables key recovery

Pre-Processing Phase: Search for cbase

Pre-Processing Phase: Search for cbase

Pre-Processing Phase: Search for cbase

Pre-Processing Phase: Detect Collisions for cbase

Pre-Processing Phase: Detect Collisions for cbase

□ Two Class Classification: Welch's t-test for Collision Detection

Decapsulate zero ciphertext $\mathbf{c} = 0$ ($\mathbf{e} = 0$) : T_o (n = 10 executions)

Decapsulate chosen ciphertext $\mathbf{c'}$: T_x (n = 10 executions)

 \Box Compute the Welch's t-test between T_o and T_X

Experimental Setup:

- **Target**: Optimized Implementations of NTRU, NTRU Prime from pqm4 library.
- Platform: STM32F407VG MCU based on the 32-bit ARM Cortex-M4 processor (24 MHz).
- Leakage Acquisition: EM side-channels using near-field EM probe (500 Msamples/sec)

Pre-Processing Phase: Detect Collisions for cbase

□ Two Class Classification: Welch's t-test for Collision Detection

Decapsulate zero ciphertext $\mathbf{c} = 0$ ($\mathbf{e} = 0$) : T_o (n = 10 executions)

Decapsulate chosen ciphertext $\mathbf{c'}$: T_X (n = 10 executions)

 \Box Compute the Welch's t-test between T_o and T_X

Select features above threshold as Pol

Use Pol to construct template for both classes RT_o – Class O RT_x – Class X

15/24

□ Value of **e** = **0/± x**ⁱ (i.e.) No-Collision/Collision depends upon a single coefficient **f**[v]

□ For f[v] ∈ {-1,0,1}, we can build a binary distinguisher for every candidate of f[v] based on
□ Collision (Class O) / No-Collision (Class X)

□ Side-Channel templates used to classify a given attack ciphertext as Class O/Class X

Key Recovery Phase: Classify c_{attack} as Class O/Class X

 \Box Given a trace *tr* from decryption of c_{attack} , reduced templates can be used to classify as Class O/Class X.

□ Single trace classification between Class O/Class X : 100% success rate

Experimental Results: PC Oracle Attack on NTRU

- □ We successfully validated our attack on all parameters of NTRU.
- **Success Rate**: 100% with trace complexity: 1.8k 2.9k traces

Scheme	t _{base}	t _{total}	Scheme	t _{base}	t _{total}
ntruhps2048509	70	1791	ntruhps4096821	30	2911
ntruhps2048677	100	2364	ntruhrss701	70	2447

□ PC Oracle-based SCA on Kyber [RRCB20, UXT⁺22]: 1k - 3k traces

Experimental Results: PC Oracle Attack on NTRU Prime

U We successfully validated our attack on all parameters of Streamlined NTRU Prime.

Success Rate: 100% with trace complexity: 3k - 4.6k traces

Scheme	t _{base}	t _{total}	Scheme	t _{base}	t _{total}
sntrup653	420	3005	sntrup953	270	3601
sntrup761	390	3269	sntrup1013	320	4026
sntrup857	420	3731	sntrup1277	240	4688

□ PC Oracle-based SCA on Kyber [RRCB20, UXT⁺22]: 1k - 3k traces

At no point, does the attacker utilize any information about the implementation

Observations on PC Oracle-based SCA (NTRU Prime)

Information about **e** (anchor variable) does not propagate beyond decryption

❑ NTRU Prime adopts a weight check failure within decryption

□ which always fails for attack ciphertexts

□ Can we widen the scope of the attack (target side-channel leakage from re-encryption procedure) ??

Outline

Motivation

Background: NTRU-based KEMs

□ Side-Channel Assisted Chosen-Ciphertext Attacks:

□ Plaintext Checking (PC) Oracle-based SCA

Decryption Failure (DF) Oracle-based SCA

Full Decryption (FD) Oracle-based SCA

Conclusion

Decryption Failure (DF) Oracle-based SCA

□ Key Idea: We perturb valid ciphertexts c_{valid} with the attack ciphertexts c_{attack} (PC Oracle-based SCA)

Decryption Failure (DF) Oracle-based SCA

□ Key Idea: We perturb valid ciphertexts c_{valid} with the attack ciphertexts c_{attack} (PC Oracle-based SCA)

IND-CCA Secure Decapsulation

Experimental Results: DF Oracle-based SCA (NTRU Prime)

U We successfully validated our attack on all parameters of Streamlined NTRU Prime.

Success Rate: 100% with trace complexity: 4k - 5k traces

Scheme	t _{base}	t _{total}	Scheme	t _{base}	t _{total}
sntrup653	1630	4182	sntrup953	760	4436
sntrup761	1650	4566	sntrup1013	740	4603
sntrup857	1200	4631	sntrup1277	410	5287

DF Oracle-based attack on Kyber [HPP21]: 5k-8k traces

Outline

Context

Background: NTRU-based KEMs

Given Side-Channel Assisted Chosen-Ciphertext Attacks:

- Plaintext Checking (PC) Oracle-based SCA
- Decryption Failure (DF) Oracle-based SCA
- Full Decryption (FD) Oracle-based SCA

□ Conclusion

Conclusion:

□ We have demonstrated generic SCA assisted CCA on NTRU-based KEMs

Type of Oracle	Oracle Response
Plaintext Checking (PC) Oracle	$msg = m_0 \text{ or } m_1$
Decryption Failure (DF) Oracle	msg = m_{valid} or $m_{invalid}$
Full Decryption (FD) Oracle	msg = m

Take-Home Message: Breaking NTRU KEMs through SCA assisted CCA similar to LWE/LWR-based KEMs

- Experimental Validation using EM side-channel on the ARM Cortex-M4 microcontroller
- Our attacks demonstrate the ease of attacking unprotected implementations for key recovery
 - Implementation Agnostic
 - Easiest SCA
- Code Package (including traces) is available at:

https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU

References

[DTV⁺19] D'Anvers, Jan-Pieter, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. "Timing attacks on error correcting codes in post-quantum schemes." In *Proceedings of ACM Workshop on Theory of Implementation Security Workshop*, pp. 2-9. 2019.

[RRC⁺20] Ravi, Prasanna, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. "Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2020): 307-335.

[XPR⁺20] Xu, Zhuang, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. *Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber*. Cryptology ePrint Archive, Report 2020/912, 2020. https://eprint.iacr.org/2020/912, 2020.

[RBR⁺20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message Leakage in (few) NIST PQC Candidates for Practical Message Recovery and Key Recovery Attacks." Cryptology ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.

References

[NDG⁺21] Ngo, Kalle, Elena Dubrova, Qian Guo, and Thomas Johansson. "A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM." Cryptology ePrint Archive, Report 2021/079, 2021. https://eprint.iacr.org/2021/079, 2021.

[GJN20] Qian Guo, Thomas Johansson, Alexander Nilsson. "A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM." <u>https://eprint.iacr.org/2020/743</u> In IACR-CRYPTO 2020.

[BDH⁺21] Bhasin, Shivam, Jan-Pieter D'Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beirendonck. "Attacking and Defending Masked Polynomial Comparison for Lattice-Based Cryptography." In IACR-TCHES 2021.

[JJ00] Jaulmes, Éliane, and Antoine Joux. "A chosen-ciphertext attack against NTRU." In Annual International Cryptology Conference, pp. 20-35. Springer, Berlin, Heidelberg, 2000.

[KRSS19] Kannwischer, Matthias J., Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4." (2019).

References

[RRD⁺22] Rajendran, Gokulnath, Prasanna Ravi, Jan-Pieter D'Anvers, Shivam Bhasin, and Anupam Chattopadhyay. "Pushing the Limits of Generic Side-Channel Attacks on LWE-based KEMs-Parallel PC Oracle Attacks on Kyber KEM and Beyond." *Cryptology ePrint Archive* (2022).

[UXT⁺22] Ueno, Rei, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi Homma. "Curse of re-encryption: A generic power/em analysis on post-quantum kems." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2022): 296-322.

Backup

More Efficient Key Recovery Attacks

- The PC and DF oracle-based SCA extract binary information (1-bit) about the secret key, thus require thousand of traces to recover the full secret-key.
- □ Is it possible to extract more than a 1-bit information about sensitive intermediates?
- □ In LWE/LWR-based schemes, several works [SKL⁺20, RBR⁺20, NDG⁺21] have shown that the message encoding/decoding procedures leak information about all the 256 bits of the sensitive decrypted message.
- □ Are there similar vulnerabilities present in NTRU-based schemes ?
- □ Sim et al. [SKL⁺20] showed that there are similar operations in the NTRU decryption procedure which manipulate single coefficients of the decrypted message, enabling full message recovery in a single trace.
- □ Such side-channel leakage can be used to instantiate a much more informative oracle to perform efficient key recovery attacks Full Decryption (FD) oracle-based SCA

FD Oracle-based SCA

Decrypt(**sk**, **ct**) = **r'** Secret Key (**sk**): (**f**,**g**) Ciphertext (**ct**): **c**_{attack} Message (**r'**): **r'** Side-Channel based FD oracle

- □ The weight-check operation within the decryption procedure manipulates single coefficients of the decrypted messsage **r**'.
- □ If SCA leakage can be used to recover complete decrypted message **r'**, then attacker can query the decryption procedure with **c**_{base} and recover the complete secret polynomial **g** as

g = e . (r')⁻¹

FD Oracle-based SCA

Trace complexity of FD Oracle-based SCA on NTRU Prime (assuming perfect FD oracle)

Scheme	t _{total}	Scheme	t _{total}
sntrup653	420	sntrup953	270
sntrup761	390	sntrup1013	320
sntrup857	420	sntrup1277	240

Trace complexity of FD Oracle-based SCA on NTRU (assuming perfect FD oracle)

t _{total}	Scheme	t _{total}
70	ntruhps4096821	30
100	ntruhrss701	70
	t _{total} 70 100	t_totalScheme70ntruhps4096821100ntruhrss701

FD Oracle-based SCA on LWE/LWR-based schemes: 9 traces (Kyber768) [XPR⁺20], 12 traces (Saber) [NGJ⁺21]

□ **Key Difference**: No search of **c**_{base} required for LWE/LWR-based schemes