
Will you Cross the Threshold for Me?
Generic Side-Channel Assisted
Chosen-Ciphertext Attacks on
NTRU-based KEMs

Prasanna Ravi1

Martianus Frederic Ezerman1

Shivam Bhasin1

Anupam Chattopadhyay1

Sujoy Sinha Roy2

1. NTU Singapore
2. TU Graz, Austria
TCHES 2022, 21st Sep, 2022

Outline
q Motivation

q Background: NTRU-based KEMs

q Side-Channel Assisted Chosen-Ciphertext Attacks:
q Plaintext Checking (PC) Oracle-based SCA
q Decryption Failure (DF) Oracle-based SCA
q Full Decryption (FD) Oracle-based SCA

q Conclusion

q Two categories of Lattice-based KEMs:
q Learning With Errors/Rounding (LWE/LWR)
q Nth order Truncated polynomial Ring Unit (NTRU)

q Lattice-based KEMs were heavily scrutinized by Side-Channel Analysis, particularly LWE/LWR-based KEMs.

q Major Category of Attacks:
q SCA Assisted Chosen-Ciphertext Attacks (SCA Assisted CCA)
q [DTV+19, RRC+20, RBR+20, XPR+20, GJN20, BDH+21, RRD+22, … ,]

Motivation

1/24

q Main Features of SCA Assisted CCA:
q Fairly Generic - Exploits inherent algorithmic properties of the scheme
q Minimal/No knowledge of implementation (HW/SW)
q Arguably the “Easiest SCA” on lattice-based KEMs

q There are three different flavours of SCA Assisted CCA
q Plaintext-Checking (PC) Oracle-based SCA
q Decryption-Failure (DF) Oracle-based SCA
q Full-Decryption (FD) Oracle-based SCA

???

Motivation

2/24

q Questions:
q Are similar attacks possible on NTRU-based KEMs?
q If so, are NTRU-based KEMs more easy/difficult to be attacked compared to LWE/LWR-based KEMs?

q Our Contributions:
q We propose generic SCA assisted CCA on NTRU-based KEMs

q NTRU (Finalist) and NTRU Prime (Alternate Finalist)
q Approximately same effort to break NTRU-based KEMs compared to LWE/LWR-based KEMs
q No. of Queries/Traces: Few hundred to Few thousand chosen-ciphertext queries
q Attack works for all parameters for NTRU and NTRU Prime with 100% success rate
q Experimental Validation using EM side-channel on pqm4 library on the ARM Cortex-M4 microcontroller

Motivation

3/24

Our Contribution

4/24

Outline
q Motivation

q Background: NTRU-based KEMs

q Side-Channel Assisted Chosen-Ciphertext Attacks:
q Plaintext Checking (PC) Oracle-based SCA
q Decryption Failure (DF) Oracle-based SCA
q Full Decryption (FD) Oracle-based SCA

q Conclusion

q KEM is a cryptographic primitive used to derive a shared key between two untrusted parties.
q Three Procedures:

q Key Generation (KeyGen)
q Encapsulation (Encaps)
q Decapsulation (Decaps)

KeyGen

Alice
Bob

Encaps

Decaps

Public Key
(pk)

Ciphertext
(ct)

Secret Key
(sk)

Shared Session Key (K) Shared Session Key (K)

q Alice can reuse her keypair (pk, sk) to generate multiple
session keys (K).

q Static Key Setting

q Compromise of sk leads to recovery of all session keys (K).

Key Encapsulation Mechanisms (KEMs)

5/24

Decryption
(Secret Key)

Ciphertext
(ct)

Re-Encryption
Key = F(m,pk,ct)

or
Key = Random

Checks for the validity
of Ciphertext

IND-CCA Secure Decapsulation

Message
(m)

Ciphertext’
(ct’)

Verification

Pass (Valid Ciphertexts)
Fail (Invalid Ciphertexts)

Decapsulation in Lattice-based KEMs

6/24

Decryption
(Secret Key)

Malicious
Ciphertext

(ct)
Re-Encryption Random Key

IND-CCA Secure Decapsulation

Anchor
Variable

Ciphertext’
(ct’)

Verification

Decapsulation: SCA-based Chosen-Ciphertext Attacks
Side-Channel
based oracle

Key Idea:
- Build ciphertexts in order to control value of secret dependent anchor variable
- Use side-channels as oracle to recover information about anchor variable
- Key Recovery

7/24

IND-CPA secure NTRU PKE (Simplified)

x

Gen(f)

Gen(g)

f ∈ R3

h = 3.g . (f)-1 ∈ Rq

Public Key (pk): (h)
Secret Key (sk): (g,f)

q Key Generation:
q Output: public key (pk), secret key (sk)

(NTRU Instance)
g ∈ R3

Inverse f -1

(f)-1
{-1,0,1}

{-1,0,1}

x

3

8/24

q Decryption:
q Input: ct = (h), sk = (f, g)
q Output: m

Reduce
Mod 3f x

c

a = f . c e ∈ R3 x

f -1

m ∈ R3

q Encryption:
q Input: pk = (h), message m
q Output: ct = (c)

Gen(r)
r ∈ R3 x

h

h.r c = h.r + m ∈ Rq

{-1,0,1}

+

m
{-1,0,1}

IND-CPA secure NTRU PKE (Simplified)

< q/2

9/24

Outline
q Motivation

q Background: NTRU-based KEMs

q Side-Channel Assisted Chosen-Ciphertext Attacks:
q Plaintext Checking (PC) Oracle-based SCA
q Decryption Failure (DF) Oracle-based SCA
q Full Decryption (FD) Oracle-based SCA

q Conclusion

q Inspired from classical chosen-ciphertext attack on NTRU PKE by Jaulmes and Joux in Crypto 2000

q Two Phases:
q Pre-Processing Phase: Search for a base ciphertext (cbase)

q Leakage upon decryption reveals critical information about secret key
q Key-Recovery Phase:

q Use cbase to build attack ciphertexts (cattack), whose leakage enables key recovery

Plaintext Checking (PC) Oracle-based SCA

10/24

a = f . c
= 3k1 . t1 . f + k2 . t2 . g

q Decryption:

Reduce
Mod 3f x

c

a = f . c e ∈ R3 x

f -1

m ∈ R3

Chosen c = (k1 . t1) + (k2 . t2 . h)

t1 = xi1 + xi2 + xi3 + … + xim

t2 = xj1 + xj2 + xj3 + … + xjn

(i1, i2, i3, … , im), (j1, j2, j3, …, jn)
randomly chosen indices

(k1, k2) ∈ 3ℤ

t1 . f = (xi1 . f) + (xi2 . f) + … + (xim . f)
= Rot(f,i1) + Rot(f,i2) + … + Rot(f,im)
= Sum of Rotations of f

absmax((t1.f)[i]) = m

Pre-Processing Phase: Search for cbase

11/24

q Decryption:

Reduce
Mod 3x

a = f . c e ∈ R3 x

f -1

m ∈ R3

t1 . f = (xi1 . f) + (xi2 . f) + … + (xim . f)
= Rot(f,i1) + Rot(f,i2) + … + Rot(f,im)
= Sum of Rotations of f

absmax((t1.f)[i]) = m

Collision

Pre-Processing Phase: Search for cbase

f

c

11/24

q Decryption:

Reduce
Mod 3x

a = f . c e ∈ R3 x

f -1

m ∈ R3

absmax(a[i]) = (3k1 . m + k2 . n)

Choose (m, n, k1, k2) such that:
- (3k1 . m + k2 . N) > q/2
- Maximize Prob(Single Collision)

Collision(f,g,i)

a = f . c
= 3k1 . t1 . f + k2 . t2 . g

If single collision: e = +/- xi

If no collision: e = 0

Pre-Processing Phase: Search for cbase

Wrap Failure

Anchor
Variable

f

c

11/24

q How do you detect collisions??
q Side-Channels

Pre-Processing Phase: Detect Collisions for cbase

Side-Channel
based PC oracle

12/24

Pre-Processing Phase: Detect Collisions for cbase
q Two Class Classification: Welch’s t-test for Collision Detection

q Decapsulate zero ciphertext c = 0 (e = 0) : To (n = 10 executions)

q Decapsulate chosen ciphertext c’ : TX (n = 10 executions)

q Compute the Welch’s t-test between To and TX

13/24

q Target: Optimized Implementations of NTRU, NTRU Prime from pqm4 library.
q Platform: STM32F407VG MCU based on the 32-bit ARM Cortex-M4 processor (24 MHz).
q Leakage Acquisition: EM side-channels using near-field EM probe (500 Msamples/sec)

Experimental Setup:

14/24

(a) No Collision for c’ (b) Single Collision for c’

Select features above
threshold as PoI

Use PoI to construct
template for both classes

RTO – Class O
RTX – Class X

Pre-Processing Phase: Detect Collisions for cbase
q Two Class Classification: Welch’s t-test for Collision Detection

q Decapsulate zero ciphertext c = 0 (e = 0) : To (n = 10 executions)

q Decapsulate chosen ciphertext c’ : TX (n = 10 executions)

q Compute the Welch’s t-test between To and TX

15/24

q Value of e = 0/± xi (i.e.) No-Collision/Collision depends upon a single coefficient f[v]

q For f[v] ∈ {-1,0,1}, we can build a binary distinguisher for every candidate of f[v] based on
q Collision (Class O) / No-Collision (Class X)

q Side-Channel templates used to classify a given attack ciphertext as Class O/Class X

Key Recovery Phase: Build cattack using cbase

16/24

q Given a trace tr from decryption of cattack, reduced templates can be used to classify as Class O/Class X.

q Single trace classification between Class O/Class X : 100% success rate

(a) Class O (b) Class X

Key Recovery Phase: Classify cattack as Class O/Class X

17/24

q We successfully validated our attack on all parameters of NTRU.

q Success Rate: 100% with trace complexity: 1.8k - 2.9k traces

q PC Oracle-based SCA on Kyber [RRCB20, UXT+22]: 1k - 3k traces

Scheme tbase ttotal Scheme tbase ttotal

ntruhps2048509 70 1791 ntruhps4096821 30 2911

ntruhps2048677 100 2364 ntruhrss701 70 2447

Experimental Results: PC Oracle Attack on NTRU

18/24

q We successfully validated our attack on all parameters of Streamlined NTRU Prime.

q Success Rate: 100% with trace complexity: 3k - 4.6k traces

q PC Oracle-based SCA on Kyber [RRCB20, UXT+22]: 1k - 3k traces

q At no point, does the attacker utilize any information about the implementation

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 420 3005 sntrup953 270 3601

sntrup761 390 3269 sntrup1013 320 4026

sntrup857 420 3731 sntrup1277 240 4688

Experimental Results: PC Oracle Attack on NTRU Prime

19/24

q Information about e (anchor variable) does not propagate beyond decryption

q NTRU Prime adopts a weight check failure within decryption
q which always fails for attack ciphertexts

q Can we widen the scope of the attack (target side-channel leakage from re-encryption procedure) ??

Decryption
(Secret Key)

cattack Re-Encryption PRNG Key

IND-CCA Secure Decapsulation

minvalid Ciphertext’
Compare

Observations on PC Oracle-based SCA (NTRU Prime)

20/24

Outline
q Motivation

q Background: NTRU-based KEMs

q Side-Channel Assisted Chosen-Ciphertext Attacks:
q Plaintext Checking (PC) Oracle-based SCA
q Decryption Failure (DF) Oracle-based SCA
q Full Decryption (FD) Oracle-based SCA

q Conclusion

q Key Idea: We perturb valid ciphertexts cvalid with the attack ciphertexts cattack (PC Oracle-based SCA)

Decryption Failure (DF) Oracle-based SCA

Decryption
Failure

Decryption
Success

21/24

Decryption
(Secret Key)c’ =

cvalid + cattack

Re-Encryption PRNG Key

IND-CCA Secure Decapsulation

mvalid
(Class O) Ciphertext’

Verify

Side-Channel
based DF oracle

minvalid
(Class X)

Decryption Failure (DF) Oracle-based SCA
q Key Idea: We perturb valid ciphertexts cvalid with the attack ciphertexts cattack (PC Oracle-based SCA)

22/24

q We successfully validated our attack on all parameters of Streamlined NTRU Prime.

q Success Rate: 100% with trace complexity: 4k - 5k traces

q DF Oracle-based attack on Kyber [HPP21]: 5k-8k traces

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 1630 4182 sntrup953 760 4436

sntrup761 1650 4566 sntrup1013 740 4603

sntrup857 1200 4631 sntrup1277 410 5287

23/24

Experimental Results: DF Oracle-based SCA (NTRU Prime)

Outline
q Context

q Background: NTRU-based KEMs

q Side-Channel Assisted Chosen-Ciphertext Attacks:
q Plaintext Checking (PC) Oracle-based SCA
q Decryption Failure (DF) Oracle-based SCA
q Full Decryption (FD) Oracle-based SCA

q Conclusion

Conclusion:
q We have demonstrated generic SCA assisted CCA on NTRU-based KEMs

q Take-Home Message: Breaking NTRU KEMs through SCA assisted CCA similar to LWE/LWR-based KEMs

q Experimental Validation using EM side-channel on the ARM Cortex-M4 microcontroller

q Our attacks demonstrate the ease of attacking unprotected implementations for key recovery
q Implementation Agnostic
q Easiest SCA

q Code Package (including traces) is available at:

https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU

Type of Oracle Oracle Response

Plaintext Checking (PC) Oracle msg = m0 or m1

Decryption Failure (DF) Oracle msg = mvalid or minvalid

Full Decryption (FD) Oracle msg = m

24/24

https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU

Thank you!!!

References
[DTV+19] D'Anvers, Jan-Pieter, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. "Timing
attacks on error correcting codes in post-quantum schemes." In Proceedings of ACM Workshop on Theory of
Implementation Security Workshop, pp. 2-9. 2019.

[RRC+20] Ravi, Prasanna, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. "Generic Side-channel
attacks on CCA-secure lattice-based PKE and KEMs." IACR Transactions on Cryptographic Hardware and
Embedded Systems (2020): 307-335.

[XPR+20] Xu, Zhuang, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnifying Side-Channel
Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber. Cryptology ePrint
Archive, Report 2020/912, 2020. https://eprint.iacr.org/2020/912, 2020.

[RBR+20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message
Leakage in (few) NIST PQC Candidates for Practical Message Recovery and Key Recovery Attacks." Cryptology
ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.

References
[NDG+21] Ngo, Kalle, Elena Dubrova, Qian Guo, and Thomas Johansson. "A Side-Channel Attack on a Masked
IND-CCA Secure Saber KEM.” Cryptology ePrint Archive, Report 2021/079, 2021.
https://eprint.iacr.org/2021/079, 2021.

[GJN20] Qian Guo, Thomas Johansson, Alexander Nilsson. "A key-recovery timing attack on post-quantum
primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM." https://eprint.iacr.org/2020/743 In IACR-CRYPTO 2020.

[BDH+21] Bhasin, Shivam, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van
Beirendonck. "Attacking and Defending Masked Polynomial Comparison for Lattice-Based Cryptography.” In
IACR-TCHES 2021.

[JJ00] Jaulmes, Éliane, and Antoine Joux. "A chosen-ciphertext attack against NTRU." In Annual International
Cryptology Conference, pp. 20-35. Springer, Berlin, Heidelberg, 2000.

[KRSS19] Kannwischer, Matthias J., Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. "pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4." (2019).

https://eprint.iacr.org/2020/743

References
[RRD+22] Rajendran, Gokulnath, Prasanna Ravi, Jan-Pieter D'Anvers, Shivam Bhasin, and Anupam
Chattopadhyay. "Pushing the Limits of Generic Side-Channel Attacks on LWE-based KEMs-Parallel PC Oracle
Attacks on Kyber KEM and Beyond." Cryptology ePrint Archive (2022).

[UXT+22] Ueno, Rei, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi Homma. "Curse of
re-encryption: A generic power/em analysis on post-quantum kems." IACR Transactions on Cryptographic
Hardware and Embedded Systems (2022): 296-322.

Backup

Construct cbase and perform
Welch’s t-test based Leakage Detection

If (Leakage Present)

If (Weight Check(s) == Pass)

Yes

No

Yes

No

Success

Construct Reduced Templates
RTO (Class O) , RTX (Class X)

Query Attack ciphertexts cattack
and classify as Class O/X

Pre-processing Phase

Key Recovery Phase
Use Binary distinguisher table to

recover secret key s

(RTO, RTX)

Classify(cattack)

PC Oracle-based SCA:
Attack Overview

q The PC and DF oracle-based SCA extract binary information (1-bit) about the secret key, thus require thousand
of traces to recover the full secret-key.

q Is it possible to extract more than a 1-bit information about sensitive intermediates?

q In LWE/LWR-based schemes, several works [SKL+20, RBR+20, NDG+21] have shown that the message
encoding/decoding procedures leak information about all the 256 bits of the sensitive decrypted message.

q Are there similar vulnerabilities present in NTRU-based schemes ?

q Sim et al. [SKL+20] showed that there are similar operations in the NTRU decryption procedure which
manipulate single coefficients of the decrypted message, enabling full message recovery in a single trace.

q Such side-channel leakage can be used to instantiate a much more informative oracle to perform efficient key
recovery attacks – Full Decryption (FD) oracle-based SCA

More Efficient Key Recovery Attacks

Reduce
Mod 3

3f
xcbase

3f . cbase x

g-1

r’
e = ±1 . xi Weight

Check

Secret Key (sk): (f,g)
Ciphertext (ct): cattack
Message (r’): r’

Decrypt(sk, ct) = r’
FD Oracle-based SCA

q The weight-check operation within the decryption procedure manipulates single coefficients of the
decrypted messsage r’.

q If SCA leakage can be used to recover complete decrypted message r’, then attacker can query the
decryption procedure with cbase and recover the complete secret polynomial g as

g = e . (r’)-1

Side-Channel
based FD oracle

FD Oracle-based SCA

Scheme ttotal Scheme ttotal

sntrup653 420 sntrup953 270

sntrup761 390 sntrup1013 320

sntrup857 420 sntrup1277 240

Scheme ttotal Scheme ttotal

ntruhps2048509 70 ntruhps4096821 30

ntruhps2048677 100 ntruhrss701 70

Trace complexity of FD Oracle-based SCA on NTRU Prime (assuming perfect FD oracle)

Trace complexity of FD Oracle-based SCA on NTRU (assuming perfect FD oracle)

q FD Oracle-based SCA on LWE/LWR-based schemes: 9 traces (Kyber768) [XPR+20], 12 traces (Saber) [NGJ+21]

q Key Difference: No search of cbase required for LWE/LWR-based schemes

