NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Generic Side-Channel Assisted
Chosen-Ciphertext Attacks on
NTRU-based KEMs

Prasanna Ravi?

Martianus Frederic Ezerman?
Shivam Bhasin?

Anupam Chattopadhyay?
Sujoy Sinha Roy?

1. NTU Singapore
2. TU Graz, Austria
TCHES 2022, 215t Sep, 2022

Outline

O Motivation

O Background: NTRU-based KEMs

0 Side-Channel Assisted Chosen-Ciphertext Attacks:
O Plaintext Checking (PC) Oracle-based SCA
U Decryption Failure (DF) Oracle-based SCA
O Full Decryption (FD) Oracle-based SCA

J Conclusion

Motivation

U Two categories of Lattice-based KEMs:
O Learning With Errors/Rounding (LWE/LWR)
O Nth order Truncated polynomial Ring Unit (NTRU)

U Lattice-based KEMs were heavily scrutinized by Side-Channel Analysis, particularly LWE/LWR-based KEMs.

U Major Category of Attacks:

L SCA Assisted Chosen-Ciphertext Attacks (SCA Assisted CCA)
Q [DTV+*19, RRC*20, RBR*20, XPR*20, GJN20, BDH*21, RRD*22, ...,]

Malicious
Ciphertexts

Side-Channel based
Oracle

A 4

\ 4

v

Ctmal

v

il
'JJJJJ

1/24

Motivation

U Main Features of SCA Assisted CCA:
O Fairly Generic - Exploits inherent algorithmic properties of the scheme
O Minimal/No knowledge of implementation (HW/SW)
O Arguably the “Easiest SCA” on lattice-based KEMs

U There are three different flavours of SCA Assisted CCA
O Plaintext-Checking (PC) Oracle-based SCA
U Decryption-Failure (DF) Oracle-based SCA
O Full-Decryption (FD) Oracle-based SCA

Side-Channel Assisted Chosen
Ciphertext Attacks

|
. v

LWE/LWR-based NTRU-based
PC Oracle-based FD Oracle-based DF Oracle-based
[DTVV19], [RRBC20], [XPRO20], [RBRC20] [GJN20], [BDH+21]
[UXT*22], [RRD*22] [NDGJ21], [NDJ21]

2/24

Motivation

U Questions:

Q
Q

Are similar attacks possible on NTRU-based KEMs?
If so, are NTRU-based KEMs more easy/difficult to be attacked compared to LWE/LWR-based KEMs?

(J Our Contributions:

Q

OO0 0

We propose generic SCA assisted CCA on NTRU-based KEMs
O NTRU (Finalist) and NTRU Prime (Alternate Finalist)
Approximately same effort to break NTRU-based KEMs compared to LWE/LWR-based KEMs
No. of Queries/Traces: Few hundred to Few thousand chosen-ciphertext queries
Attack works for all parameters for NTRU and NTRU Prime with 100% success rate

Experimental Validation using EM side-channel on pgm4 library on the ARM Cortex-M4 microcontroller

3/24

Our Contribution

Side-Channel Assisted Chosen

Ciphertext Attacks
LWE/LWR-based NTRU-based
PC Oracle-based FD Oracle-based DF Oracle-based PC Oracle-based FD Oracle-based DF Oracle-based
[DTVV19], [RRBC20], [XPRO20], [RBRC20] [GIN20], [BDH+21] [This Work] [This Work] [This Work]

[UXT*22], [RRD*22] [NDGJ21], [NDJ21]

4/24

Outline

O Motivation

O Background: NTRU-based KEMs

0 Side-Channel Assisted Chosen-Ciphertext Attacks:
O Plaintext Checking (PC) Oracle-based SCA
U Decryption Failure (DF) Oracle-based SCA
O Full Decryption (FD) Oracle-based SCA

J Conclusion

Key Encapsulation Mechanisms (KEMs)

O KEMis a cryptographic primitive used to derive a shared key between two untrusted parties.
O Three Procedures:

L Key Generation (KeyGen)

O Encapsulation (Encaps)

O Decapsulation (Decaps) (g
O Alice can reuse her keypair (pk, sk) to generate multiple

Alice :
Public Key Bob session keys (K).
(pk)

O Static Key Setting

Secret Key
sk
f (5K _ 0 Compromise of sk leads to recovery of all session keys (K).
// Ciphertext
/(fo (ct)
Shared Session Key (K) Shared Session Key (K)

5/24

Decapsulation in Lattice-based KEMs

IND-CCA Secure Decapsulation

Ciphertext

(ct) Decryption Key = F(m,pk,ct)

Re-Encryption Verification or
Key = Random

(Secret Key)

Checks for the validity Pass (Valid Ciphertexts)
of Ciphertext = Fail (Invalid Ciphertexts)

6/24

Decapsulation: SCA-based Chosen-Ciphertext Attacks

(B ::N\ Side-Channel
=\ based oracle
IND-CCA Secure Decapsulation o
Malicious
Ciphertext Anchor Ciphertext’

(ct) Variable (ct’)

Random Key

Key ldea:
- Build ciphertexts in order to control value of secret dependent anchor variable
- Use side-channels as oracle to recover information about anchor variable
- Key Recovery

7/24

IND-CPA secure NTRU PKE (Simplified)

0 Key Generation:
O Output: public key (pk), secret key (sk)

] fER;) g
{-1,0,1}

(H* 3

l l (NTRU Instance)
Gen(g) s R3:@—.@——~ h=3.g.(f)1eR,
{-1,0,1} Public Key (pk): (h)

Secret Key (sk): (g,f)

8/24

IND-CPA secure NTRU PKE (Simplified)

O Encryption:
O Input: pk = (h), message m

O Output: ct = (c) {-1,0,1}

O Decryption:
Q Input: ct = (h), sk =(f, g)
O Output: m

C
J\ a0 < ar2 J\
a=f.c eER
f :* > 3 =* » mER3

9/24

Outline

0 Side-Channel Assisted Chosen-Ciphertext Attacks:
O Plaintext Checking (PC) Oracle-based SCA

Plaintext Checking (PC) Oracle-based SCA

O Inspired from classical chosen-ciphertext attack on NTRU PKE by Jaulmes and Joux in Crypto 2000

U Two Phases:
U Pre-Processing Phase: Search for a base ciphertext (Cpase)
U Leakage upon decryption reveals critical information about secret key
O Key-Recovery Phase:
0 Use ¢, to build attack ciphertexts (c uack), Whose leakage enables key recovery

10/24

Pre-Processing Phase: Search for ¢,

C l fl
/L a=f.c e ER; /L
"X » mER;

f ;\‘ ' VIOC

0 Decryption:

a=f.c

= 3k, .+ ks, .

t,.f=(x1.f)+ (x2.F) + ...+ (xim. f)
= Rot(f,i;) + Rot(f,i,) + ... + Rot(f,i,)
= Sum of Rotations of f

Chosenc=(k;.t;) +(k,.t,.h)

ty= X1+ X2+ X3+, +xim
ty= X1+ X2+ x3 + ., +xn

(i1,i2,i3, ...,im), (j1,j2,j3, ..., jn)
randomly chosen indices

(ky, ky) € 3Z absmax((t,.f)[i]) = m

11/24

Pre-Processing Phase: Search for ¢,

O Decryption:

m € R;
|
; |l
t,.f=(x1.)+ (x2.f) + ...+ (x™. f) I
= Rot(f,i;) + Rot(f,i,) + ... + Rot(f,i,,) : Sl & b]
= Sum of Rotations of f : b L fod b
absmax((t;.f)[i]) = m :
|
: Collision
|

11/24

Pre-Processing Phase: Search for ¢,

O Decryption: Anchor

C l Variable f-1
|
/L a=f.c eER; cR
e | Mod3 o T

a=f.c
Wrap Failure
a/2 @/

= 3k, .+ k> . -

absmax(ali]) = (3k; . m + k;, . n) === Collision(f,g,i)

ith coeff. above q/2 (threshold)

-a/2
Coeffs. of a

Choose (m, n, k4, k,) such that:
'(3k1.m+k2.N)>q/2
- Maximize Prob(Single Collision)

If single collision: e = +/- X
If no collision: e=0

11/24

Pre-Processing Phase: Detect Collisions for ¢, .

0 How do you detect collisions??

1 Side-Channels
Side-Channel

based PC oracle F%\

)

®

Decrypt(sk, ct) = m

()=

f_
c 1 f.c : o m
& e e-#1.x

()
I
o

I
I+

12/24

Pre-Processing Phase: Detect Collisions for ¢, .

J Two Class Classification: Welch’s t-test for Collision Detection

U Decapsulate zero ciphertext c=0 (e =0) : T, (n = 10 executions)

U Decapsulate chosen ciphertext ¢’ : Ty (n = 10 executions)

O Compute the Welch’s t-test between T,and Ty

13/24

Experimental Setup:

O Target: Optimized Implementations of NTRU, NTRU Prime from pgm4 library.
O Platform: STM32F407VG MCU based on the 32-bit ARM Cortex-M4 processor (24 MHz).
U Leakage Acquisition: EM side-channels using near-field EM probe (500 Msamples/sec)

14/24

t-test

Pre-Processing Phase: Detect Collisions for ¢, .

J Two Class Classification: Welch’s t-test for Collision Detection

U Decapsulate zero ciphertext c=0 (e =0) : T, (n = 10 executions)

U Decapsulate chosen ciphertext ¢’ : Ty (n = 10 executions)

O Compute the Welch’s t-test between T,and Ty

50

40 A
301
20 1
101
0-
—10-

—20 1

-30

—— t-test threshold

0 1000 2000 3000 4000 5000
Time Index

(a) No Collision for c’

50

40
301
201
101

0-
101
201

30

—— t-test threshold

0 1000 2000 3000 4000 5000
Time Index

(b) Single Collision for ¢’

Select features above
threshold as Pol

Use Pol to construct
template for both classes
RT,— Class O
RTy— Class X

15/24

Key Recovery Phase: Build ¢, USING Cp.ce

Decrypt(sk, ct) = m

(f)*

C

cattack = F(cbase) + X"

f_% f

(Depending on f[v])
e=0

e=11.x

O Value of e =0/ x (i.e.) No-Collision/Collision depends upon a single coefficient f[v]

Q For f[v] € {-1,0,1}, we can build a binary distinguisher for every candidate of f[v] based on

O Collision (Class O) / No-Collision (Class X)

0 Side-Channel templates used to classify a given attack ciphertext as Class O/Class X

16/24

Key Recovery Phase: Classify ... as Class O/Class X

O Given a trace tr from decryption of ¢ .. reduced templates can be used to classify as Class O/Class X.

0.6 1

0.4 1

0.2 1

0.0 A

Normalized Voltage
Normalized Voltage

—0.2

-0.4 -0.4

0 20 40 60 80 100 120 140

Time Index
(a) Class O

0.6

0.4

0.2

0.0 1

-0.2 1

—— class O
— class X

0 20 40

O Single trace classification between Class O/Class X : 100% success rate

6I0 SIO l(l)O 150 1210
Time Index

(b) Class X

17/24

Experimental Results: PC Oracle Attack on NTRU

U We successfully validated our attack on all parameters of NTRU.

U Success Rate: 100% with trace complexity: 1.8k - 2.9k traces

ntruhps2048509 70 1791 ntruhps4096821 2911

ntruhps2048677 100 2364 ntruhrss701 70 2447

O PC Oracle-based SCA on Kyber [RRCB20, UXT*22]: 1k - 3k traces

18/24

Experimental Results: PC Oracle Attack on NTRU Prime

O We successfully validated our attack on all parameters of Streamlined NTRU Prime.

U Success Rate: 100% with trace complexity: 3k - 4.6k traces

sntrup653 420 3005 sntrup953 270 3601
sntrup761 390 3269 sntrupl013 320 4026

sntrup857 420 3731 sntrupl277 240 4688

O PC Oracle-based SCA on Kyber [RRCB20, UXT*22]: 1k - 3k traces

O At no point, does the attacker utilize any information about the implementation

19/24

Observations on PC Oracle-based SCA (NTRU Prime)

Ciphertext’

Cattack PRNG Key

(Secret Key)

O Information about e (anchor variable) does not propagate beyond decryption

L NTRU Prime adopts a weight check failure within decryption
O which always fails for attack ciphertexts

L Can we widen the scope of the attack (target side-channel leakage from re-encryption procedure) ??

20/24

Outline

0 Side-Channel Assisted Chosen-Ciphertext Attacks:

0 Decryption Failure (DF) Oracle-based SCA

Decryption Failure (DF) Oracle-based SCA

U Key Idea: We perturb valid ciphertexts ¢, ;4 With the attack ciphertexts ¢ . (PC Oracle-based SCA)

Decrypt(sk, ct) = m

(Depending on f[v])

()=

§ f
Coert »

f.

o

€yalig+ 0
(Class O)

)

Decryption
Success

n"valid

= cvalid + cattack

@

(Class X)

eiv = evalid i 1. x

> Or
I“invalid

Decryption
Failure

21/24

Decryption Failure (DF) Oracle-based SCA

U Key Idea: We perturb valid ciphertexts ¢, ;4 With the attack ciphertexts ¢ . (PC Oracle-based SCA)

Cyalid + Cattack

Side-Channel
based DF oracle

mvalid
(Class O)

rninvalid
(Class X)

Ciphertext’

IND-CCA Secure Decapsulation

PRNG Key

22/24

Experimental Results: DF Oracle-based SCA (NTRU Prime)

O We successfully validated our attack on all parameters of Streamlined NTRU Prime.

U Success Rate: 100% with trace complexity: 4k - 5k traces

sntrup653 1630 4182 sntrup953 760 4436
sntrup761 1650 4566 sntrup1013 740 4603

sntrup857 1200 4631 sntrupl277 410 5287

U DF Oracle-based attack on Kyber [HPP21]: 5k-8k traces

23/24

Outline

O Context

O Background: NTRU-based KEMs

0 Side-Channel Assisted Chosen-Ciphertext Attacks:
O Plaintext Checking (PC) Oracle-based SCA
U Decryption Failure (DF) Oracle-based SCA
O Full Decryption (FD) Oracle-based SCA

(J Conclusion

Conclusion:

0 We have demonstrated generic SCA assisted CCA on NTRU-based KEMs

Type of Oracle Oracle Response

Plaintext Checking (PC) Oracle msg = my or m;
Decryption Failure (DF) Oracle MSE = M,4;iq OF Miryalid
Full Decryption (FD) Oracle msg=m

0 Take-Home Message: Breaking NTRU KEMs through SCA assisted CCA similar to LWE/LWR-based KEMs
O Experimental Validation using EM side-channel on the ARM Cortex-M4 microcontroller
O Our attacks demonstrate the ease of attacking unprotected implementations for key recovery

O Implementation Agnostic

U Easiest SCA

L Code Package (including traces) is available at:

https://github.com/PRASANNA-RAVI/SCA Assisted CCA on NTRU

24/24

https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU

Thank you!!!

Side-Channel Assisted Chosen
Ciphertext Attacks

x : 1

LWE/LWR-based NTRU-based
PC Oracle-based FD Oracle-based DF Oracle-based PC Oracle-based FD Oracle-based DF Oracle-based
[DTVV19], [RRBC20], [XPRO20], [RBRC20] [GIN20], [BDH+21] [This Work] [This Work] [This Work]

[UXT*22], [RRD*22] [NDGJ21], [NDJ21]

References

[DTV*19] D'Anvers, Jan-Pieter, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. "Timing
attacks on error correcting codes in post-quantum schemes." In Proceedings of ACM Workshop on Theory of
Implementation Security Workshop, pp. 2-9. 2019.

[RRC*20] Ravi, Prasanna, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. "Generic Side-channel
attacks on CCA-secure lattice-based PKE and KEMs." IACR Transactions on Cryptographic Hardware and
Embedded Systems (2020): 307-335.

[XPR*20] Xu, Zhuang, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnifying Side-Channel
Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber. Cryptology ePrint
Archive, Report 2020/912, 2020. https://eprint.iacr.org/2020/912, 2020.

[RBR*20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message
Leakage in (few) NIST PQC Candidates for Practical Message Recovery and Key Recovery Attacks." Cryptology
ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.

References

[NDG*21] Ngo, Kalle, Elena Dubrova, Qian Guo, and Thomas Johansson. "A Side-Channel Attack on a Masked
IND-CCA Secure Saber KEM.” Cryptology ePrint Archive, Report 2021/079, 2021.
https://eprint.iacr.org/2021/079, 2021.

[GJN20] Qian Guo, Thomas Johansson, Alexander Nilsson. "A key-recovery timing attack on post-quantum
primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM." https://eprint.iacr.org/2020/743 In IACR-CRYPTO 2020.

[BDH*21] Bhasin, Shivam, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Péppelmann, and Michiel Van
Beirendonck. "Attacking and Defending Masked Polynomial Comparison for Lattice-Based Cryptography.” In
IACR-TCHES 2021.

[JJ00] Jaulmes, Eliane, and Antoine Joux. "A chosen-ciphertext attack against NTRU." In Annual International
Cryptology Conference, pp. 20-35. Springer, Berlin, Heidelberg, 2000.

[KRSS19] Kannwischer, Matthias J., Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. "pgm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4." (2019).

https://eprint.iacr.org/2020/743

References

[RRD*22] Rajendran, Gokulnath, Prasanna Ravi, Jan-Pieter D'Anvers, Shivam Bhasin, and Anupam
Chattopadhyay. "Pushing the Limits of Generic Side-Channel Attacks on LWE-based KEMs-Parallel PC Oracle
Attacks on Kyber KEM and Beyond." Cryptology ePrint Archive (2022).

[UXT*22] Ueno, Rei, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi Homma. "Curse of
re-encryption: A generic power/em analysis on post-quantum kems." IACR Transactions on Cryptographic
Hardware and Embedded Systems (2022): 296-322.

Backup

Pre-processing Phase =

(RTo, RTy)

PC Oracle-based SCA:
Attack Overview

Classify(Cattack) ~ Key Recovery Phase

No

Yes

Success

More Efficient Key Recovery Attacks

U The PC and DF oracle-based SCA extract binary information (1-bit) about the secret key, thus require thousand
of traces to recover the full secret-key.

O Isit possible to extract more than a 1-bit information about sensitive intermediates?

O In LWE/LWR-based schemes, several works [SKL*20, RBR*20, NDG*21] have shown that the message
encoding/decoding procedures leak information about all the 256 bits of the sensitive decrypted message.

U Are there similar vulnerabilities present in NTRU-based schemes ?

O Sim et al. [SKL*20] showed that there are similar operations in the NTRU decryption procedure which
manipulate single coefficients of the decrypted message, enabling full message recovery in a single trace.

O Such side-channel leakage can be used to instantiate a much more informative oracle to perform efficient key
recovery attacks — Full Decryption (FD) oracle-based SCA

FD Oracle-based SCA

Decrypt(sk, ct) =r’ Side-Channel

Secret Key (sk): (f,g) /\based FD oracle
Ciphertext (ct): C yack ’\

Message (r’): r’

2

3f _71 |
3f . Cbase e-= il 5 XI
cbase :w >

O The weight-check operation within the decryption procedure manipulates single coefficients of the
decrypted messsage r’.

O If SCA leakage can be used to recover complete decrypted message r’, then attacker can query the

decryption procedure with ¢, and recover the complete secret polynomial g as

g=e.(r)?

FD Oracle-based SCA

Trace complexity of FD Oracle-based SCA on NTRU Prime (assuming perfect FD oracle)

sntrup653 420 sntrup953 270
sntrup761 390 sntrup1013 320

sntrup857 420 sntrupl1277 240

Trace complexity of FD Oracle-based SCA on NTRU (assuming perfect FD oracle)

ntruhps2048509 70 ntruhps4096821

ntruhps2048677 100 ntruhrss701 70

O FD Oracle-based SCA on LWE/LWR-based schemes: 9 traces (Kyber768) [XPR*20], 12 traces (Saber) [NGJ*21]

O Key Difference: No search of ¢, required for LWE/LWR-based schemes

