
Improving Speed of
Dilithium’s Signing
Procedure

Prasanna Ravi
G1802146B

School of Computer Science
and Engineering
Physical Analysis and
Cryptographic Engineering,
Temasek Laboratories

17th April 2019

1 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

2 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

3 / 33



Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• A large scale quantum computer has the potential to break all
of public key cryptography that we use today.

• This has prompted the cryptographic community to develop
quantum resistant alternatives for public-key cryptography.

• NIST process for standardization of Post-Quantum
cryptography is underway.

• Lattice-based cryptography has contributed the maximum
number of proposals in terms of post-quantum key exchange
and post-quantum signature schemes.

4 / 33



Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• A large scale quantum computer has the potential to break all
of public key cryptography that we use today.

• This has prompted the cryptographic community to develop
quantum resistant alternatives for public-key cryptography.

• NIST process for standardization of Post-Quantum
cryptography is underway.

• Lattice-based cryptography has contributed the maximum
number of proposals in terms of post-quantum key exchange
and post-quantum signature schemes.

4 / 33



Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• A large scale quantum computer has the potential to break all
of public key cryptography that we use today.

• This has prompted the cryptographic community to develop
quantum resistant alternatives for public-key cryptography.

• NIST process for standardization of Post-Quantum
cryptography is underway.

• Lattice-based cryptography has contributed the maximum
number of proposals in terms of post-quantum key exchange
and post-quantum signature schemes.

4 / 33



Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• A large scale quantum computer has the potential to break all
of public key cryptography that we use today.

• This has prompted the cryptographic community to develop
quantum resistant alternatives for public-key cryptography.

• NIST process for standardization of Post-Quantum
cryptography is underway.

• Lattice-based cryptography has contributed the maximum
number of proposals in terms of post-quantum key exchange
and post-quantum signature schemes.

4 / 33



Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• A large scale quantum computer has the potential to break all
of public key cryptography that we use today.

• This has prompted the cryptographic community to develop
quantum resistant alternatives for public-key cryptography.

• NIST process for standardization of Post-Quantum
cryptography is underway.

• Lattice-based cryptography has contributed the maximum
number of proposals in terms of post-quantum key exchange
and post-quantum signature schemes.

4 / 33



This Work

• Dilithium is one of the candidate signature schemes based
on lattice-based cryptography.

• This work involves improving the signing speed of Dilithium
signature scheme.

• The Signing procedure is iterative in nature with multiple
rejection conditions in each iteration.

• Several iterations of the signing procedure are repeated until
the outputs satisfy a certain condition.

• Repetition rate hampers the performance of the signing
procedure.

• We attempt to improve the signing speed through algorithmic
optimizations.

5 / 33



This Work

• Dilithium is one of the candidate signature schemes based
on lattice-based cryptography.

• This work involves improving the signing speed of Dilithium
signature scheme.

• The Signing procedure is iterative in nature with multiple
rejection conditions in each iteration.

• Several iterations of the signing procedure are repeated until
the outputs satisfy a certain condition.

• Repetition rate hampers the performance of the signing
procedure.

• We attempt to improve the signing speed through algorithmic
optimizations.

5 / 33



This Work

• Dilithium is one of the candidate signature schemes based
on lattice-based cryptography.

• This work involves improving the signing speed of Dilithium
signature scheme.

• The Signing procedure is iterative in nature with multiple
rejection conditions in each iteration.

• Several iterations of the signing procedure are repeated until
the outputs satisfy a certain condition.

• Repetition rate hampers the performance of the signing
procedure.

• We attempt to improve the signing speed through algorithmic
optimizations.

5 / 33



This Work

• Dilithium is one of the candidate signature schemes based
on lattice-based cryptography.

• This work involves improving the signing speed of Dilithium
signature scheme.

• The Signing procedure is iterative in nature with multiple
rejection conditions in each iteration.

• Several iterations of the signing procedure are repeated until
the outputs satisfy a certain condition.

• Repetition rate hampers the performance of the signing
procedure.

• We attempt to improve the signing speed through algorithmic
optimizations.

5 / 33



This Work

• Dilithium is one of the candidate signature schemes based
on lattice-based cryptography.

• This work involves improving the signing speed of Dilithium
signature scheme.

• The Signing procedure is iterative in nature with multiple
rejection conditions in each iteration.

• Several iterations of the signing procedure are repeated until
the outputs satisfy a certain condition.

• Repetition rate hampers the performance of the signing
procedure.

• We attempt to improve the signing speed through algorithmic
optimizations.

5 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

6 / 33



Digital Signature

• A signature scheme consists of three procedures:

• Key Generation (Generates the public and private keys)
• Verification (Verifies correctness of signature)

7 / 33



Digital Signature

• A signature scheme consists of three procedures:

• Key Generation (Generates the public and private keys)
• Verification (Verifies correctness of signature)

7 / 33



Digital Signature

• A signature scheme consists of three procedures:
• Key Generation (Generates the public and private keys)

• Verification (Verifies correctness of signature)

7 / 33



Digital Signature

• A signature scheme consists of three procedures:
• Key Generation (Generates the public and private keys)
• Signature Generation (Generates signature for a given

message)

• Verification (Verifies correctness of signature)

7 / 33



Digital Signature

• A signature scheme consists of three procedures:
• Key Generation (Generates the public and private keys)
• Signature Generation (Generates signature for a given

message)
• Verification (Verifies correctness of signature)

7 / 33



Digital Signature

• A signature scheme consists of three procedures:
• Key Generation (Generates the public and private keys)
• Signature Generation (Generates signature for a given

message)
• Verification (Verifies correctness of signature)

7 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq

• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Learning With Errors (LWE) Problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S+E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

8 / 33



Dilithium Signature Scheme

• Security of Dilithium is based on the MLWE problem.

• Computations are performed over matrices and vectors of
polynomials.

• Signature generation is an iterative procedure with multiple
rejection conditions.

• Two algorithmic level optimizations to improve signing speed
have been explored.

• Opt-1: Reduction of computations in every rejected iteration.
• Opt-2: Reduction of repetition rate.

9 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

10 / 33



Reducing Computations in Rejected Iterations

• The signing procedure consists of a number of conditional
checks.

• Is it possible to detect the rejections early to reduce the
overhead of the rejected iterations?

• We perform an early-evaluation of the rejection conditions, so
we detect the rejections early and immediately abort the
current iteration.

11 / 33



Reducing Computations in Rejected Iterations

• The signing procedure consists of a number of conditional
checks.

• Is it possible to detect the rejections early to reduce the
overhead of the rejected iterations?

• We perform an early-evaluation of the rejection conditions, so
we detect the rejections early and immediately abort the
current iteration.

11 / 33



Reducing Computations in Rejected Iterations

• The signing procedure consists of a number of conditional
checks.

• Is it possible to detect the rejections early to reduce the
overhead of the rejected iterations?

• We perform an early-evaluation of the rejection conditions, so
we detect the rejections early and immediately abort the
current iteration.

11 / 33



Dilithium’s Signing Procedure

12 / 33



Dilithium’s Signing Procedure

12 / 33



Reducing Computations in Rejected Iterations

• We target the rejection conditions that yield frequent
rejections.

• Both these rejection conditions are only infinity norm checks
(‖ · ‖∞ < K).

• The condition has to be satisfied for all coefficients of a given
module.

• Consider the computations involving module z ∈ R`q.

13 / 33



Reducing Computations in Rejected Iterations

• We target the rejection conditions that yield frequent
rejections.

• Both these rejection conditions are only infinity norm checks
(‖ · ‖∞ < K).

• The condition has to be satisfied for all coefficients of a given
module.

• Consider the computations involving module z ∈ R`q.

13 / 33



Reducing Computations in Rejected Iterations

• We target the rejection conditions that yield frequent
rejections.

• Both these rejection conditions are only infinity norm checks
(‖ · ‖∞ < K).

• The condition has to be satisfied for all coefficients of a given
module.

• Consider the computations involving module z ∈ R`q.

13 / 33



Reducing Computations in Rejected Iterations

• We target the rejection conditions that yield frequent
rejections.

• Both these rejection conditions are only infinity norm checks
(‖ · ‖∞ < K).

• The condition has to be satisfied for all coefficients of a given
module.

• Consider the computations involving module z ∈ R`q.

13 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Evaluation of Rejection Conditions

14 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

15 / 33



Early Evaluation of Rejection Conditions

• We perform the complete set of computations one
polynomial at a time.

• Best Case - (C+1) computations.

• Worst Case - ((C+1)*N) computations.

• Average Case - ((C+1)*
N

2
) computations.

• We apply the same optimization to all the Infy Checks in
Dilithium’s signing procedure.

16 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.
• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.
• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.
• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.

• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.
• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Improving the Repetition Rate

• Total Repetition rate depends upon the failure rate of
individual rejection conditions

• We specifically look at one rejection condition: ‖z‖∞ < γ1−β
• z = sc+ y.

• ‖y‖ � ‖sc‖.
• Coefficients of y are uniformly distributed in [0, γ1 − 1].

• Coefficients of sc are very small and normally distributed in
[0, β].

17 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Generation of z

18 / 33



Improving the Repetition Rate

• Rejection Sampling is performed so as to hide the sc
component within z.

• Allows to generate upto 280 signatures without leaking the
distribution of the sc component.

• If y > γ1 − β, probability of z in bad range is very high.

• y is sampled uniformly in [0, γ1] and hence has a certain
non-negligible probability that its corresponding z lies in the
bad range.

• Can we alter the distribution of y so as to reduce the
occurrence of z in the bad range?

19 / 33



Improving the Repetition Rate

• Rejection Sampling is performed so as to hide the sc
component within z.

• Allows to generate upto 280 signatures without leaking the
distribution of the sc component.

• If y > γ1 − β, probability of z in bad range is very high.

• y is sampled uniformly in [0, γ1] and hence has a certain
non-negligible probability that its corresponding z lies in the
bad range.

• Can we alter the distribution of y so as to reduce the
occurrence of z in the bad range?

19 / 33



Improving the Repetition Rate

• Rejection Sampling is performed so as to hide the sc
component within z.

• Allows to generate upto 280 signatures without leaking the
distribution of the sc component.

• If y > γ1 − β, probability of z in bad range is very high.

• y is sampled uniformly in [0, γ1] and hence has a certain
non-negligible probability that its corresponding z lies in the
bad range.

• Can we alter the distribution of y so as to reduce the
occurrence of z in the bad range?

19 / 33



Improving the Repetition Rate

• Rejection Sampling is performed so as to hide the sc
component within z.

• Allows to generate upto 280 signatures without leaking the
distribution of the sc component.

• If y > γ1 − β, probability of z in bad range is very high.

• y is sampled uniformly in [0, γ1] and hence has a certain
non-negligible probability that its corresponding z lies in the
bad range.

• Can we alter the distribution of y so as to reduce the
occurrence of z in the bad range?

19 / 33



Uniform Distribution with Reduced Acceptance Rate

20 / 33



Uniform Distribution with Reduced Acceptance Rate

20 / 33



Uniform Distribution with Reduced Acceptance Rate

20 / 33



Uniform Distribution with Reduced Acceptance Rate

20 / 33



Uniform Distribution with Reduced Acceptance Rate

20 / 33



Semi-Uniform and Semi-Gaussian

21 / 33



Semi-Uniform and Semi-Gaussian

21 / 33



Semi-Uniform and Semi-Gaussian

21 / 33



Semi-Uniform and Semi-Gaussian

21 / 33



Semi-Uniform and Semi-Gaussian

21 / 33



Alternate Distributions for Sampling y

300 200 100 0 100 200 300
Numbers indexed around γ1−β

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d
 p

ro
b
a
b
ili

ty
 (

1
/Q

)

p: 0.5

p: 0.6

p: 0.7

p: 0.8

p: 0.9
U(γ1−1,y)

D(s1 c)

Figure: U(γ1−β,γ1−1,p) - Uniform distribution with reduced acceptance
rate p

22 / 33



Alternate Distributions for Sampling y

300 200 100 0 100 200 300
Numbers indexed around γ1−β

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

N
o
rm

a
liz

e
d
 p

ro
b
a
b
ili

ty
 (

1
/Q

) σ :25

σ :40

σ :60

σ :80

σ :100

σ :120

σ :140

σ :160

σ :180

σ :200

σ :220

σ :240

σ :260

σ :280

σ :300

U(γ1−1,y)

D(s1 c)

Figure: D(γ1−β,γ1−1,σ) - Piece-wise Gaussian distribution with standard
deviation σ

23 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

24 / 33



Experimental Results

• Implementation of Early-Eval optimization and
Improved-Sampling optimizations on reference implementation
of Dilithium.

• Both the optimizations can be employed independently.

• Since both optimizations are done at the algorithmic level,
they can be ported to all implementation platforms.

• Results were obtained for about 107 runs of the signing
procedure.

• Implemented on Intel(R) Core(TM) i5-4460 CPU 3.20GHz
and compiled with gcc-4.2.1.

25 / 33



Experimental Results

0 50 100 150 200 250 300
Standard deviation σ of D(γ1−β,γ1−1,σ)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

It
e
ra

ti
o
n
 C

o
u
n
t

0.5 0.6 0.7 0.8 0.9 1.0
Acceptance Probability p of U(γ1−β,γ1−1,p)

U(γ1−β,γ1−1,p)

D(γ1−β,γ1−1,σ)

U(γ1−1,y)

Figure: Improvements in iteration Count evaluated for various parameters
of our alternate distributions

26 / 33



Experimental Results

0 50 100 150 200 250 300
Standard deviation σ of D(γ1−β,γ1−1,σ)

1.8e+06

2.0e+06

2.2e+06

2.4e+06

2.6e+06

2.8e+06

3.0e+06
C

y
cl

e
 C

o
u
n
t

0.5 0.6 0.7 0.8 0.9 1.0
Acceptance Probability p of U(γ1−β,γ1−1,p)

U(γ1−β,γ1−1,p)

D(γ1−β,γ1−1,σ)

U(γ1−1,y)

Figure: Improvements in Cycle count evaluated for various parameters of
our alternate distributions

27 / 33



Experimental Results

• Early-Eval optimization yields improvement of about 8% in
the signing speed.

• Combination of Early-Eval and Improved-Sampling
optimizations could yield speed up upto 38%.

• Early-Eval optimization does not have any impact on security
of the scheme.

• Does the use of improved distributions for y affect the
security of the scheme? If so, by how much?

• How many signatures does the attacker need to observe an
exploitable skew in the distribution of z.

• This could lead to a potential quantitative trade-off between
security and efficiency, which needs to be evaluated.

28 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

29 / 33



Future Work

• Security Analysis of the signing procedure with improved
distribution.

• Evaluation of the security-efficiency trade-off due to use of
improved distributions.

• Utilization of a constant-time Gaussian sampler to sample
from the improved distribution.

30 / 33



Table of Contents

1 Context

2 Background

3 Algorithmic Optimizations

4 Experimental Results

5 Future Work

6 Conclusion

31 / 33



Future Work

• This work proposes algorithmic optimizations for the
Dilithium signature scheme

• We propose two optimizations:
• Early-Eval optimization
• Improved-Sampling optimization

• We were able to achieve a speed-up of upto 38% by
employing a combination of both the optimizations.

• Incorporation of the Improved-Sampling optimization could
lead to a potential security-efficiency trade-off.

• We intend to perform a quantitative evaluation of the
security-efficiency trade-off as part of future work.

32 / 33



Thank you!
Any questions?

33 / 33


	Context
	Background
	Algorithmic Optimizations
	Experimental Results
	Future Work
	Conclusion

